Сходимость рядов теории возмущений в задаче о распространении коротких волн в случайно неоднородной среде
Рассмотрение решения параболического уравнения Леонтовича, описывающего распространение коротких волн в случайно неоднородной среде. Получение строгих оценок погрешностей вычисления сумм этих рядов с помощью уравнений Дайсона в приближении Бурре.
Подобные документы
Интегрирование линейного дифференциального уравнения с помощью степенных рядов, метод неопределенного коэффициента. Синтез управления не более, чем с одним переключением в управляемой системе второго порядка. Малые возмущения системы линейных уравнений.
курсовая работа, добавлен 08.06.2014Изучение линейных однородных уравнений с постоянными коэффициентами (случай простых и кратных корней), их фазовая плоскость. Расчет показателей нормальной линейной однородной и линейной неоднородной системы с постоянными коэффициентами в математике.
курсовая работа, добавлен 04.01.2016Парадоксы и противоречия, порождаемые электромагнитной теорией Максвелла при моделировании распространения электромагнитных волн. Критерий истинности отдельных уравнений. Математические уравнения моделирования электродинамических процессов в вакууме.
статья, добавлен 22.04.2019Получения явных выражений и нелинейных рекуррентных соотношений для решений диофантовых уравнений с помощью алгебраических чисел. Нахождение простого решения диофантова уравнения и уравнения Пелля. Рассмотрение возможности обобщения данного подхода.
статья, добавлен 07.10.2015Случай переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Решение задач методами краевых условий, прогонки С.К. Годунова, половины констант. Применяемые формулы построчного ортонормирования.
научная работа, добавлен 18.10.2010Численный метод нахождения значений собственных функций дискретных полуограниченных снизу операторов. Оценки остатков сумм рядов Рэлея–Шредингера поправок теории возмущений. Вычисление оператора Лапласа с возмущающей функцией комплексного переменного.
статья, добавлен 31.05.2013Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.
научная работа, добавлен 01.02.2013Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.
учебное пособие, добавлен 18.09.2012Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.
курсовая работа, добавлен 07.11.2020Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.
реферат, добавлен 09.02.2017- 62. Ряды Фурье
Определение основных понятий рядов в высшей математике, их классификация и характеристики: положительные, знакочередующиеся, функциональные, степенные ряды и ряды Фурье (в том числе четных, нечетных и непериодических функций). Абсолютная сходимость.
реферат, добавлен 17.01.2011 Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
контрольная работа, добавлен 07.06.2013Построение математической модели, позволяющей описывать и определять тепловые потоки и температурные поля стационарных тепловых процессов, происходящих в неоднородных средах. Аналитические методы решения уравнения теплопроводности и разностная схема.
контрольная работа, добавлен 29.06.2012Задача нахождения точных констант методами суммирования рядов Фурье, ее анализ для совокупности аппроксимирующих последовательностей, которые называют тригонометрическими операторами Баскакова. Рассмотрение некоторых частных случаев данной задачи.
статья, добавлен 31.05.2013Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.
курсовая работа, добавлен 04.12.2018Последовательности и числовые ряды. Абсолютная и условная сходимость. Ряды с положительными членами, функциональные и знакочередующиеся, действия с ними и признаки их сравнения. Достаточные признаки сходимости знакоположительных рядов. Признак Лейбница.
курс лекций, добавлен 29.09.2014Рассмотрение вопросов реализации авторегрессионных моделей для векторных временных рядов. Способ получения оценок параметров модели путем решения соответствующей вариационной задачи. Дифференцирование произвольной функции по векторным аргументам.
статья, добавлен 23.06.2018- 69. Создание программного обеспечения для решения кубических уравнений с использованием формулы Кардано
Изучение методов решения кубических уравнений, формула Кардано. Подробный алгоритм решения уравнений третьей степени и его реализация в объектно-ориентированной среде Delphi. Модуль комплексных чисел. Определение значения аргумента кубического корня.
статья, добавлен 03.03.2018 Модели динамики мнений типа Hegselmann-Krause. Различные конфигурации в неоднородной модели. Распределения числа кластеров в неоднородной и классической моделях, финальных мнений и размера максимального кластера, плотность распределения агентов.
дипломная работа, добавлен 07.12.2019Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.
лекция, добавлен 26.08.2015История развития знаний и известные способы решения квадратных уравнений. Зависимость корней от знака дискриминанта. Решение квадратных уравнений с помощью циркуля, линейки. Свойства коэффициентов квадратного уравнения, теорема Виета и задача Диофанта.
презентация, добавлен 13.01.2017Основные численные методы решения краевой задачи: метод стрельбы, конечно-разностный метод. Примеры задач и их реализация в среде MathCad. Сравнение результатов вычислений. Пример решения нелинейного ОДУ (обыкновенного дифференциального уравнения).
курсовая работа, добавлен 05.06.2015Исследование понятия двойных и повторных рядов. Обобщение необходимых и достаточных признаков сходимости. Понятие знакопеременного ряда. Сущность признака Лейбница. Абсолютная и условная сходимость ряда. Понятие функционального ряда. Степенные ряды.
курсовая работа, добавлен 20.06.2013Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.
шпаргалка, добавлен 10.09.2009