Компьютерное зрение: распознавание человека по изображению лица с помощью нейросетевых технологий
Основные классы задач в распознавании человека по изображению лица. Поиск изображения в больших базах данных, задача контроля доступа. Нейросетевые методы распознавания человека по изображению лица. Архитектура нейронных сетей, разработка алгоритма.
Подобные документы
Понятие распознавания: история развития, классификация основных методов распознавания образов (РО). Общая характеристика задач РО и их основные типы. Главные проблемы и перспективы развития распознавания образов: особенности применения РО на практике.
реферат, добавлен 26.04.2016Анализ решения задачи дообучения классических дискретных нейронных сетей Хемминга и Хебба без потерь запомненной ранее информации. Основные процессы распознавания и классификации образов в системах, построенных на основе искусственных нейронных сетей.
статья, добавлен 01.03.2017Проектирование крупных корпоративных сетей. Главные цели архитектуры корпоративной сети. Иерархическая модель сети. Устройства уровня доступа. Основные технологии защиты. Маршрутизация трафика между сегментами сети. Дизайн больших корпоративных сетей.
методичка, добавлен 13.03.2015Основы и принципы построения, обучения, функционирования, области применения и характеристики наиболее распространенных специализированных искусственных нейронных сетей (нейронных парадигм), предназначенных для решения различных классов прикладных задач.
учебное пособие, добавлен 09.09.2012Описание подхода к ранжированному поиску в библиографических базах данных, с помощью которого решается проблема эффективного тематического поиска в автоматизированных библиотечных каталогах. Подход к мета-поиску для множества библиографических баз данных.
статья, добавлен 11.05.2015Понятие машинного зрения и распознавания образов, существующие разработки в области распознавания жестов глухонемых, основные требования и ограничения. Методы и этапы распознавания образов применительно к задаче распознавания языка жестов.
дипломная работа, добавлен 21.09.2018Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).
курсовая работа, добавлен 04.04.2009- 83. Комбинирование классификаторов при распознавании символов. Сравнительный анализ нескольких подходов
Описание способов комбинирования классификаторов в задаче распознавания символов. Различные методы реализации этапов комбинирования, их сочетания. Эксперимент, заключающийся в распознавании множества изображений отдельных заглавных букв английского языка.
статья, добавлен 18.01.2018 Теоретическое обоснование использования нейронных сетей при распознавании образов. Обоснование необходимости и основные этапы, перспективы разработки устойчивых алгоритмов, которые распознавали бы образы с различным уровнем зашумленных входных образов.
статья, добавлен 26.11.2017- 85. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Рассмотрен вопрос предварительной обработки изображения для автоматического распознавания. Описан алгоритм для восстановления изображения, основанный на алгоритме полиномиального масштабирования. Рассмотрено изображение загрязненного черного текста.
статья, добавлен 26.04.2019Анализ значения информационных технологий в жизни человека. Основные характеристики новой информационной технологии. Информационная технология управления. Влияние информационных технологий на жизнь человека. Негативное влияние компьютера на человека.
реферат, добавлен 08.12.2019Устранение шумовых помех методом Гауссова сглаживания как один из основных этапов предварительной обработки изображения. Требования, предъявляемые к пользовательскому интерфейсу программного приложения. Математическая модель задачи распознавания.
дипломная работа, добавлен 30.06.2017Разработка алгоритма распознавания чисел с эмуляцией нейронной сети на основе использования стандартных функций табличного процессора MS Excel. Распознавание образов знаков десятичной системы, построенной с помощью горизонтальных и вертикальных штрихов.
статья, добавлен 29.01.2020Назначение графических управляющих элементов NNTool, подготовка данных, создание нейронной сети, обучение и прогон. Разделение линейно-неотделимых множеств. Задача аппроксимации. Распознавание образов. Импорт-экспорт данных. Применение нейронных сетей.
статья, добавлен 23.01.2014Потребность в разработке систем распознавания буквенно-символьной информации документов. Формирование цифровых изображений двумерных или трехмерных сцен с помощью датчиков. Модификация пикселей в малых окрестностях. Изменение тонового распределения.
дипломная работа, добавлен 17.05.2016Осцилляторные нейросетевые модели сегментации изображений и зрительного внимания. Типы нейронных сетей. Быстрые нейронные сети: проектирование, настройка, приложения. Нейроноподобные модели описания динамических процессов преобразования информации.
курс лекций, добавлен 08.02.2013Решение сложных интеллектуальных задач с помощью искусственных нейронных сетей. Автоматизация и гибридизация генетических алгоритмов аппарата нечеткой логики. Применения метода генетического программирования в селекции и репродукции новых пород деревьев.
статья, добавлен 18.01.2018Речеобразование и работа с записью голоса. Рекуррентная нейронная сеть. Точность работы алгоритма для распознавания эмоций человека по аудиозаписи его голоса. Классификация человеческих эмоций в потоке мультимедийных данных. Обработка записи речи.
дипломная работа, добавлен 15.09.2018- 95. Структурно-функциональная организация нейронных сетей в промышленных системах обработки информации
Нейросетевые технологии искусственного интеллекта и их применение при разработке интеллектуальных датчиков, анализаторов данных и систем обработки информации. Облегчение контроля технического состояния объектов и их параметрическая идентификация.
автореферат, добавлен 12.02.2018 Задачи систем компьютерного зрения, особенности метрической (реальное время, структура в движении и др.) и семантической (небо, часы и др.) информации. Сложности компьютерного зрения и решаемые с его помощью задачи: распознавание лиц, объектов и др.
презентация, добавлен 07.03.2015Разработка модели для представления, фильтрации и сегментации изображения в современных системах распознавания образов. Сокращение вычислений, связанных с манипуляциями с каждым пикселем. Изображение как вещественная функция двух переменных х и y.
статья, добавлен 01.02.2019Понятие защиты информации. Защита персонального компьютера от несанкционированного доступа, информации в базах данных. Архитектура защиты Access. Система безопасности SQL Server. Пользователи базы данных. Ограничение доступа пользователей к данным.
курсовая работа, добавлен 15.07.2012Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Проблема информационной идентификации с помощью облачных технологий и пути ее решения, при помощи различных систем идентификаций. Система сканирования глаза. Ведущие методы и алгоритмы идентификаций человека, сильные и слабые стороны данных технологий.
статья, добавлен 07.11.2018