Две начально-краевые задачи с нелинейными граничными условиями для одномерного гиперболического уравнения
Исследуются смешанные задачи для гиперболического уравнения с нелинейными граничными условиями. Доказано существование единственного обобщенного решения поставленных задач. Оценка уравнения с помощью неравенства Коши преобразованием части уравнения.
Подобные документы
Исследование смешанной задачи для вырождающегося уравнения гиперболического типа с интегральным условием. Способы доказывания теоремы о существовании единственного обобщенного решения. Отличительные черты задач с нелокальными интегральными условиями.
статья, добавлен 31.05.2013- 2. Об одной нелокальной задаче для гиперболического уравнения с интегральными условиями первого рода
Анализ нелокальной задачи для гиперболического уравнения с интегральными условиями первого рода. Метод, позволяющий свести поставленную задачу к задаче с интегральным условием второго рода. Доказательство существования единственного обобщенного решения.
статья, добавлен 31.05.2013 - 3. Начально-краевая задача для одномерного гиперболического уравнения с интегральным граничным условием
Исследование начально-краевой задачи для гиперболического уравнения с нелокальным граничным условием, содержащим интеграл от искомого решения. Нелокальные соотношения, связывающие значение искомого решения в граничных и внутренних точках области.
статья, добавлен 31.05.2013 Исследование нелокальной краевой задачи для смешанного параболо-гиперболического уравнения второго порядка с негладкими условиями сопряжения. Доказательство существования решения данной задачи. Решение интегрального уравнения Фредгольма второго рода.
статья, добавлен 15.05.2017Для обобщенного двуосесимметрического уравнения Гельмгольца в бесконечной полосе a поставлена задача с условиями на линии. При одних ограничениях на параметры уравнения установлено существование решения поставленной задачи, при других - единственность.
статья, добавлен 31.05.2013Существование и единственность решения задачи для псевдопараболического и гиперболического уравнений четвертого порядка, когда условия склеивания задается на не характеристической линии. Сведение решаемой задачи к решению системы интегральных уравнений.
статья, добавлен 18.05.2016Исследование краевой задачи для уравнения в частных производных третьего порядка гиперболического типа в бесконечной области трехмерного евклидова пространства. Доказательство однозначной разрешимости задачи методом Римана-Адамара с помощью функции.
статья, добавлен 20.07.2018- 8. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.
дипломная работа, добавлен 27.02.2020 Исследование нелокальной задачи для вырождающегося уравнения гиперболического типа в характеристической области, условия которой содержат обобщенные операторы дробного интегродифференцирования на характеристиках. Доказательство однозначной разрешимости.
статья, добавлен 31.05.2013Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями.
лабораторная работа, добавлен 27.04.2011Критерии единственности решений задач для дифференциального уравнения в частных производных. Изучение краевых задач на сопряжения с нелокальным граничным условием, связывающим значения искомого решения на противоположных сторонах прямоугольной области.
статья, добавлен 31.05.2013Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.
курсовая работа, добавлен 16.04.2015Доказательство теоремы существования периодических по времени решений квазилинейного волнового уравнения с непостоянными коэффициентами и однородными граничными условиями, одно из которых является условием Неймана. Основные свойства волнового оператора.
статья, добавлен 27.05.2018Уравнение Шрёдингера с некоторыми фиксированными физическими величинами. Задача Коши для уравнения Шрёдингера после преобразования Фурье. Проверка доказательства теоремы о бесконечной гладкости решений уравнения Шрёдингера с начальными условиями.
курсовая работа, добавлен 05.03.2018Задача Коши и дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Интегрирование линейного однородного уравнения. Теорема существования и единственности решения дифференциального уравнения. Частные случаи уравнений II порядка.
контрольная работа, добавлен 31.03.2015Дифференциальные уравнения в частных производных. Задача Пуанкаре, правила ее решения. Приведение к каноническому виду дифференциального уравнения второго порядка от двух независимых переменных. Краевые задачи для математического равенства Лапласа.
шпаргалка, добавлен 04.04.2015Принцип Дюамеля для дифференциальных уравнений с частными производными. Задача Коши для однородного уравнения с неоднородными начальными условиями. Метод импульсов и интеграл Дюамеля. Принцип суперпозиции для линейного дифференциального уравнения.
контрольная работа, добавлен 09.05.2015Исследование нелокальной задачи, краевые условия которой существенно зависят от изменения коэффициента уравнения при младшей производной. Доказательство однозначной разрешимости поставленной задачи. Частное решение модифицированного уравнения Бесселя.
статья, добавлен 31.05.2013Разработка способа редукции задач с нормальными производными в граничных условиях к задачам Гурса. Построение картины их разрешимости. Для уравнения Лиувилля построены в явном виде решения задач с граничными условиями первого, второго и третьего рода.
автореферат, добавлен 17.12.2017Методика нахождения общего решения дифференциального уравнения при помощи приведения к каноническому виду. Алгоритм вычисления задачи Коши методом Даламбера. Порядок расчета первой смешанной задачи для уравнения теплопроводности на заданном отрезке.
контрольная работа, добавлен 29.11.2016Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.
учебное пособие, добавлен 02.05.2014Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.
лекция, добавлен 26.08.2015Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.
контрольная работа, добавлен 12.01.2013Теорема С.В. Ковалевской о существовании и единственности решения уравнения в частных производных. Доказательство положения об общем определении квазилинейного равенства. Способ построения задачи Коши с помощью геометрического смысла характеристик.
курсовая работа, добавлен 26.02.2014Рассмотрение обратной задачи Коши для параболического уравнения с коэффициентами, зависящими от малого параметра сингулярным образом. Осуществление оценки скорости сходимости решения исходной задачи к решению соответствующей усредненной задачи.
статья, добавлен 22.01.2017