Осевая симметрия

Понятие и фундаментальные свойства осевой симметрии. Правила тождественного преобразования в пространстве относительно неподвижной прямой. Движение первого рода как отображение плоскости на себя. Формула определения расстояния между двумя точками.

Подобные документы

  • Понятие инверсии как сложного преобразования геометрических фигур, ее координатные формулы. Построение образа точки, прямой и окружности при инверсии. Свойства углов и расстояний при инверсии. Применение инверсии при решении задач на построение.

    курсовая работа, добавлен 05.10.2017

  • Правила начертания и основные назначения линий на чертежах всех отраслей промышленности. Способы преобразования проекций. Расчет расстояния от точки до плоскости. Построение линии пересечения плоскостей. Взаимное пересечение поверхностей вращения.

    методичка, добавлен 23.09.2011

  • Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.

    презентация, добавлен 26.01.2014

  • Определители матриц. Векторное произведение векторов, его свойства. Линейные преобразования пространства. Прямая в пространстве. Виды уравнений прямой. Гипербола и парабола. Конусы и цилиндры. Непрерывные функции и их свойства. Производная и дифференциал.

    шпаргалка, добавлен 11.05.2010

  • Связь между поверхностными интегралами первого и второго рода, свойства поверхностного интеграла второго рода и формулы Остроградского-Гаусса и Стокса. Поток векторного поля. Физическое приложение поверхностного интеграла как потока векторного поля.

    контрольная работа, добавлен 23.04.2011

  • Использование движения плоскости в начертательной геометрии для установления и исследования функциональной зависимости между различными величинами. Вращение плоскости и пространства, определение его центра и оси. Классификация видов и формул поворота.

    курсовая работа, добавлен 16.08.2010

  • Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.

    курсовая работа, добавлен 17.01.2011

  • Криволинейные интегралы 1 и 2-го рода: механический смысл, свойства, формулы вычисления. Общий вид уравнения прямой, проходящей через две произвольные точки. Определение координат центра тяжести дуги циклоиды. Формула Грина и объяснение ее смысла.

    лекция, добавлен 21.11.2013

  • Исследование сущности способа совмещения, частного случая вращения плоскости вокруг горизонтали и фронтали. Анализ метода решения задач преобразования плоскости общего положения в плоскость уровня. Анализ вращения вокруг следов плоскости и линии уровня.

    реферат, добавлен 25.10.2011

  • Интеграл Эйлера первого рода (бета-функция). Определение Эйлерова интеграла второго рода. Характеристика свойств непрерывности гамма-функции, основного функционального уравнения и формулы дополнения. Установление связи между бета- и гамма-функциями.

    курсовая работа, добавлен 18.12.2012

  • Древнейшие упоминания о правильных многогранниках в трактате Платона "Тимаус". Элементы симметрии тетраэдра, куба, октаэдра. Использование свойств многогранников в различных сферах деятельности человека. Анализ прямой правильной пятиугольной антипризмы.

    реферат, добавлен 29.01.2012

  • Рассмотрение признака параллельности прямых. Изучение теоремы и леммы. Характеристика взаимного расположения прямой и плоскости. Определение угла между скрещивающимися и параллельными прямыми. Свойства равенства отрезков, заключенных между плоскостями.

    презентация, добавлен 23.10.2013

  • Переход от общих уравнений прямой к каноническим. Взаимное расположение прямых в пространстве, вычисление угла между ними. Порядок решения системы уравнений по формулам Крамера. Определение направляющего вектора. Проверка условия коллинеарности.

    контрольная работа, добавлен 30.10.2019

  • Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.

    контрольная работа, добавлен 03.06.2012

  • Ортогональное проецирование точки. Определение натуральной величины прямой линии. Следы плоскости. Позиционные и метрические задачи. Методы преобразования эпюра Монжа. Многогранники. Кривые поверхности. Касательные плоскости и аксонометрические проекции.

    учебное пособие, добавлен 06.05.2013

  • Формулирование условий перпендикулярности двух прямых общего положения. Определение на чертеже расстояния от точки до прямой частного положения. Построение точки пересечения плоскости с прямой линией общего положения и линии пересечения двух плоскостей.

    лекция, добавлен 24.07.2014

  • Построение стереографической проекции всех элементов симметрии точечной группы в стандартной установке с использованием сетки Вульфа. План пространственной группы симметрии. Определение видов многогранников. Расчет кратности системы точек проекции.

    контрольная работа, добавлен 06.03.2012

  • Формулировка случайной функции определенной на вероятностном пространстве в узком смысле. Основные условия симметрии и согласованности семейства конечномерных распределений. Определение стандартного Пуассоновского процесса с заданной интенсивностью.

    курс лекций, добавлен 28.08.2017

  • Характеристика методики определения угла между двумя векторами с помощью их скалярного произведения. Определение уравнения плоскости основания пирамиды, угла между гранью, образованной векторами и плоскостью основания. Решение матричного уравнения.

    методичка, добавлен 14.12.2015

  • Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.

    презентация, добавлен 13.04.2012

  • Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.

    учебное пособие, добавлен 19.12.2013

  • Основные правила определения дифференциального оператора Лапласа. Механический смысл вектора ротора. Сущность поверхностного интеграла II-го рода. Характеристика главных способов вычисления потока. Построение уравнения плоскости треугольника, его расчет.

    лекция, добавлен 17.01.2014

  • Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.

    курс лекций, добавлен 20.09.2011

  • Матрицы и определители, операции над ними. Линейная зависимость системы векторов, свойства векторного произведения. Комплексные числа. Прямая в пространстве. Взаимное расположение прямой и плоскости. Кривые второго порядка. Решение систем уравнений.

    методичка, добавлен 22.12.2010

  • Сущность построения проекции вектора на ось. Определение расстояний от точки до прямой, до плоскости, между скрещивающимися прямыми. Нахождение угла между прямыми, прямой и плоскостью, плоскостями. Решение метрических задач векторно-координатным методом.

    курсовая работа, добавлен 28.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.