Реализация алгоритмов на графах
Определение способа ввода входной информации. Определение самого короткого цикла в графе. Обход графа в глубину. Определение кратчайшего пути из заданной вершины во все остальные. Построение минимального остового дерева с помощью алгоритма Прима.
Подобные документы
Общие сведения о графах. Реализация алгоритма Флойда. Графы и способы их представления. Пути и циклы в графах. Программная реализация алгоритма поиска кратчайшего пути между двумя любыми вершинами графа. Пример применения алгоритма Флойда на практике.
курсовая работа, добавлен 19.11.2011Метод обхода вершин графа. Поиск эйлерова пути в графах. Построение минимального остова во взвешенном неориентированном графе. Построение максимального паросочетания в двудольном графе. Эффективный метод систематического обхода вершин алгоритма.
реферат, добавлен 06.03.2010Теория графов как область дискретной математики, историческая справка, основные термины и теоремы. Описание различных задач на графах, нахождение кратчайших путей. Язык программирования Delphi. Текст программы определения кратчайшего пути в графе.
курсовая работа, добавлен 17.12.2015Рассмотрение видов графов, существующих параллельных алгоритмов поиска кратчайшего пути, определение областей их применения. Рассмотрение систем навигации и анализ эффективности применения параллельных алгоритмов для поиска кратчайшего пути в графе.
статья, добавлен 16.07.2018Определение сущности графа. Ознакомление с процессом вывода на экран суммарного веса ребер, через которые проходит путь. Характеристика особенностей алгоритма Дейкстры. Изучение и анализ методов проверки на корректность введенных данных в программе.
курсовая работа, добавлен 18.10.2017Представление графов по матрице смежности, инцидентности. Списки ребер, инцидентных каждой вершине. Построение минимального остовного дерева по алгоритму Прима и алгоритму Краскала. Нахождение компонента связности. Варианты обхода в ширину и в глубину.
презентация, добавлен 29.01.2015Рассмотрение алгоритмов нахождения кратчайших путей в ориентированных графах. Описание и отличительные черты алгоритма Дейкстры, Флойда-Варшалла и Беллмана-Форда. Разработка и реализация программы для нахождения в заданном орграфе кратчайшего пути.
курсовая работа, добавлен 20.10.2016Программная реализация алгоритма построения минимального остовного дерева взвешенного связного неориентированного графа. Использование языка программирования C#, графического интерфейса и программной платформы .NET Framework для разработки приложения.
курсовая работа, добавлен 21.02.2019Изучение способа описания среды с препятствиями и результатов решения задачи поиска кратчайшего пути перемещения груза автокраном при помощи алгоритмов на графах. Сравнение способов создания матрицы смежности графа, описывающей среду, по трудоемкости.
статья, добавлен 31.08.2018История возникновения и развития теории графов. Представление информации в форме графа. Эффективные алгоритмы на графах. Поиск эйлерова пути. Алгоритм нахождения кратчайшего элементарного пути с использованием структуры данных "приоритетная очередь".
конспект урока, добавлен 10.05.2012Постановка задачи навигация движения, описание алгоритма поиска кратчайшего пути между двумя вершинами графа и анализ программной реализации алгоритма Дейкстры. Графическая реализация полученных результатов с помощью объектно-ориентированного языка С++.
курсовая работа, добавлен 11.05.2012Рассмотрение алгоритма построения минимального остовного дерева взвешенного связного неориентированного графа. Описание, псевдокод и блок-схема алгоритма Краскала. Код программы и сложность алгоритма. Описание, псевдокод и сложность алгоритма Прима.
курсовая работа, добавлен 25.04.2015Понятие и матричное представление графов. Определение матрицы смежности и матрицы идентичности. Алгоритм "умножения матриц". Применение алгоритма Флойда-Уоршалла для поиска кратчайших путей в графе. Построение минимального скелета нагруженного графа.
презентация, добавлен 18.03.2016Ознакомление с задачей о кратчайшем пути — задачей поиска самого короткого пути между двумя точками (вершинами) на графе, в которой минимизируется сумма весов ребер, составляющих путь. Изучение алгоритмов определения пути: Флойда—Уоршелла, Дейкстры.
реферат, добавлен 17.05.2014Характеристика и сущность простых алгоритмов поиска и упорядочения элементов в графе. Выбор и содержание программирования, преимущества языка Pascal. Особенности поиска в ширину и в глубину, способы улучшения простых методов и описание алгоритма.
курсовая работа, добавлен 28.04.2011Изучение процедуры поиска кратчайшего пути на графе по алгоритму Дейкстры. Отображение расстояний на графе. Выбор кратчайшей автодороги из Ростова до Казани. Особенности решения практических задач для телекоммуникационных сетей и задач маршрутизации.
контрольная работа, добавлен 10.09.2015Пример графа для иллюстрации понятия "кратчайший путь". Граф с официальным циклом. Иллюстрация логики алгоритма Форда-Беллмана. Работа алгоритма Е. Дейкстры. Формализованная запись логики. Пути в бесконтурном графе. Использование алгоритма Флойда.
презентация, добавлен 24.09.2017Разработка программного обеспечения для решения задач поиска кратчайшего пути между вершинами графа на языке программирования Delphi с помощью алгоритма Дейкстры. Достоинства динамических массивов, понятия теории графов, представление графов на ЭВМ.
курсовая работа, добавлен 07.06.2011Минимальное остовное дерево в связанном, взвешенном, неориентированном графе. Свойства минимального остова. Построение постепенно возрастающих связанных компонент, проверка ребер из множества в порядке возрастания их веса. Особенность алгоритма Крускала.
реферат, добавлен 09.04.2012Построение сети передачи данных с помощью протокола маршрутизации OSPF. Разработка алгоритмов, позволяющих обрабатывать информацию, представленную с помощью графа. Их использование для нахождения минимального остовного дерева и поиска кратчайших путей.
дипломная работа, добавлен 25.09.2014Доказывание достаточного признака отсутствия гамильтоновой цепи в графе. Пример удаления одной вершины из цепи. Удаление вершин из гамильтонова графа. Метод нахождения гамильтонова пути, основанный на алгоритме нахождения гамильтонова цикла в графе.
статья, добавлен 09.04.2016Задача дискретной математики о разбиении множества. Графовое представление связей между объектами. Анализ и тестирование алгоритма построения кратчайшего остовного дерева для ориентированного графа на основе решения задачи линейного программирования.
методичка, добавлен 15.01.2018- 23. Двоичное дерево
Представление двоичного дерева в памяти компьютера. Обход двоичного дерева с помощью различных способов (прямом, обратном, симметричном порядке). Функции, реализующие обходы двоичного дерева. Рекурсивные Си-функции обхода двоичного дерева в глубину.
лекция, добавлен 24.07.2014 Развитие теории о нахождении кратчайших потей. Понятие "граф" и его значения для нахождения кратчайшего пути. Наиболее эффективные алгоритмы нахождения кратчайшего пути и их результаты. Тестовый пример описания алгоритма Дейкстры и реализация программы.
курсовая работа, добавлен 22.09.2011- 25. Алгоритм Каргера
Рандомизированный алгоритм для эффективного нахождения минимального разреза в связанном графе. Изобретен Девидом Каргером и опубликован в 1993 году. Листинг кода программы, его реализация. Определение количества рёбер графа. Примеры работы программы.
практическая работа, добавлен 11.06.2020