Двойные интегралы, их основные свойства и выражение в декартовых координатах
Понятие интеграла от функции двух, трех и большего числа переменных, основная методика их выражения в декартовых координатах. Двойные и тройные интегралы, их свойства и способы вычисления. Вычисление криволинейных интегралов с помощью формулы Грина.
Подобные документы
- 51. Интеграл Лебега
Математическое обоснование алгоритма вычисления интеграла Лебега и его основные свойства от ограниченной измеримой функции Предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега. Интеграл Лебега по множеству бесконечной меры.
реферат, добавлен 12.03.2010 Понятие криволинейных координат точки. Контравариантные и ковариантные компоненты вектора. Ортогональные криволинейные параметры и условия их ортогональности. Определение выражения для скорости и ускорения точки в цилиндрической системе координат.
учебное пособие, добавлен 28.12.2013Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.
контрольная работа, добавлен 12.01.2013Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.
презентация, добавлен 18.09.2013Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.
курс лекций, добавлен 23.10.2013Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.
курсовая работа, добавлен 27.11.2018Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Неравенства и теорема о среднем. Вычисление с помощью повторного интегрирования. Анализ и практика применения тройных интегралов для расчета координат.
презентация, добавлен 17.09.2013Понятие и сущность интеграла Лебега как обобщение интеграла Римана на широкий класс функций. Определение и свойства интеграла Лебега: линейность, возможность безотказного перехода к пределу. Сходимость интегралов Лебега от последовательностей функций.
эссе, добавлен 30.06.2016Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.
реферат, добавлен 11.12.2016- 60. Интегралы и ряды
Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.
методичка, добавлен 06.08.2015 Объём цилиндрического тела. Примеры вычисления двойных интегралов. Приложения двойных интегралов к задачам механики. Вычисление площадей и объёмов с помощью двойных интегралов. Вычисление площадей поверхностей с помощью двойного интегрирования.
реферат, добавлен 12.03.2010Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.
контрольная работа, добавлен 13.10.2013- 63. Интеграл Лебега
Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.
курсовая работа, добавлен 20.10.2010 Характеристика основных правил вычисления площади поверхности. Определение площади куска касательной плоскости. Порядок расчета поверхностного интеграла II-го рода. Составление уравнения направляющей цилиндра и вычисление площади части поверхности.
лекция, добавлен 17.01.2014Численные методы и их использование для вычисления кратных интегралов. Метод ячеек как один из простейших способов вычисления интеграла. Оценка погрешности метода ячеек. Текст и блок-схема программы. Выполнение программы в математическом пакете.
контрольная работа, добавлен 30.10.2010Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.
лекция, добавлен 26.09.2017Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.
курсовая работа, добавлен 31.10.2017Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
лабораторная работа, добавлен 25.11.2014Нахождение массы тела переменной плотности как путь выведения понятия и алгоритма тройного интеграла. Их вычисление с помощью повторного интегрирования. Цилиндрические координаты как соединение полярных в плоскости xy с обычной декартовой аппликатой z.
реферат, добавлен 12.11.2010Вычисление площадей и объёмов с помощью двойных интегралов. Анализ сущности двойного интеграла в геометрии. Расчет интегральной суммы в криволинейном цилиндре. Площадь области, ограниченной замкнутой кривой. Нахождение определенного интеграла функции.
презентация, добавлен 17.09.2013Свойства шара и сферы. Принцип Кавальери, позволяющий более просто вычислять объёмы тел, доказательство с его помощью формулы объёма шара. Взаимное расположение шара и плоскости. Вычисление объёмов тел с помощью интеграла. Площадь поверхности шара.
реферат, добавлен 26.05.2012Информационный осмотр методов решения кратных интегралов. Понятие о кубатурных формулах. Метод ячеек и последовательное интегрирование. Метод Симпсона для кратных интегралов, его реализация. Программа вычисления интегралов с помощью кубатурной формулы.
курсовая работа, добавлен 23.04.2011Сущность понятия "несобственные интегралы". Формула Ньютона-Лейбница. Нарушение первого и второго условия. Сходящийся и расходящийся интеграл. Несобственный интеграл с бесконечными пределами. Интегралы от неограниченных функций, признак сравнения.
лекция, добавлен 29.09.2017Построение гамма-функции, отталкиваясь от функционального уравнения. Основные свойства гамма-функции и ее использование (вычисление эйлерова интеграла первого рода, или бета-функции). Асимптотическое поведение гамма-функции и получение формулы Стирлинга.
курсовая работа, добавлен 22.04.2011Характеристика трех наиболее употребительных приближенных способов вычисления определенных интегралов в математике: методов прямоугольников, трапеций, парабол. Использование определенных формул для расчета их по числу значений подынтегральной функции.
реферат, добавлен 02.09.2013