Прямая в пространстве

Фундаментальные понятия геометрии. Прямая в пространстве как линия пересечения двух плоскостей. Направляющий вектор в каноническом уравнении. Угол между прямой и проекцией. Взаимное расположение точек на плоскости. Определение пересекающих по формуле.

Подобные документы

  • Решение систем линейных уравнений методами Крамера и Гаусса. Аналитическая геометрия на плоскости. Векторная алгебра и аналитическая геометрия в пространстве. Теоремы о пределах. Уравнение высоты, опущенной из точки на плоскость, угол между векторами.

    методичка, добавлен 09.04.2012

  • Уравнение прямой с направляющим и нормальным вектором. Кривые второго порядка, полярная система координат. Определение терминов "гипербола", "парабола" и "эллипс". Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.

    презентация, добавлен 21.09.2017

  • Классификация метрических задач на определение метрических характеристик геометрических объектов. Метрические свойства ортогонального проецирования. Теорема прямого угла. Перпендикуляр к плоскости. Определение углов между прямой и плоскостями проекций.

    методичка, добавлен 03.02.2015

  • Определение точки, симметричной данной относительно плоскости. Построение разверток поверхностей, многогранника, кривых и цилиндрических поверхностей. Построение точки пересечения линии и поверхности. Построение линии пересечения двух плоскостей.

    презентация, добавлен 09.03.2015

  • Основные виды стереометрических задач. Расчет угла между прямой и плоскостью. Рассмотрение особенностей теоремы Пифагора. Система координат на плоскости. Сущность понятия ортогональность векторов. Порядок поиска расстояний между прямыми в геометрии.

    презентация, добавлен 02.03.2014

  • Сфера - фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии. Понятие шара. Взаимное расположение сферы и плоскости. Точка их касания. Определение площади сферы. Доказательство теорем о касательной к плоскости.

    реферат, добавлен 08.05.2013

  • Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой. Логичность способов нахождения расстояния от точки M1 к прямой a, которые заданы в прямоугольной декартовой системе координат Oxy на плоскости.

    курсовая работа, добавлен 26.02.2014

  • Пересечение двух многогранников и общий алгоритм построения лини пересечения поверхностей. Пересечение гранной и кривой поверхности. Описание методов вспомогательных секущих плоскостей и сфер. Особенности пересечения поверхностей вращения, теорема Монжа.

    контрольная работа, добавлен 15.04.2016

  • Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.

    учебное пособие, добавлен 13.01.2014

  • Раздел геометрии, в котором изучаются свойства фигур в пространстве. Основные фигуры: плоскость, прямая, точка. Геометрические тела: куб, тетраэдр, параллелепипед. Исходное положение научной теории, принимаемое без доказательства, следствия из аксиом.

    презентация, добавлен 13.04.2012

  • Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.

    книга, добавлен 23.11.2010

  • Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.

    учебное пособие, добавлен 13.04.2019

  • Развертка поверхности методом триангуляции. Определение натуральных величин треугольников. Обозначение направляющего единичного вектора следа и его координаты. Расчет угла, который составляет вектор нормали плоскости, совмещение плоскости треугольника.

    статья, добавлен 30.05.2017

  • Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.

    курсовая работа, добавлен 21.09.2017

  • Определение координат точки при переходе от одной системы координат к другой. Связь между старыми и новыми координатами при повороте координатных осей на некоторый угол. Кривые второго порядка. Уравнения окружности, эллипса, гиперболы и прямой общих точек

    лекция, добавлен 26.01.2014

  • Понятие и свойства вектора как математической абстракции объекта. Исследование декартовой системы координат в пространстве. Расчет плоскостей. Виды параметрических уравнений прямой. Связь полярных координат с декартовыми. Гиперболический параболоид.

    лекция, добавлен 22.11.2015

  • Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.

    презентация, добавлен 23.10.2020

  • Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.

    презентация, добавлен 13.04.2012

  • Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.

    курс лекций, добавлен 20.09.2011

  • Топологическое и метрическое пространство, база топологии, связность и компактность. Стрелка Зоргенфрея, доазательство её топологичности, метризуемость и хаусдорфовость. Прямая Зоргенфрея, база топологии, метризуемость, связность и компактность прямой.

    реферат, добавлен 31.10.2014

  • Ознакомление с сущностью прямых и обратных задач инженерной графики. Рассмотрение основных свойств ортогонального проецирования. Формулирование теоремы о проецировании прямого угла. Определение угла наклона прямой, общего положения к плоскостям проекций.

    лекция, добавлен 24.07.2014

  • Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.

    курс лекций, добавлен 02.05.2014

  • Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.

    учебное пособие, добавлен 06.09.2017

  • Множество точек в пространстве. Изучение функции двух переменных и способов её задания в плоскости. Правила нахождения пределов для переменных. Сравнение бесконечно малых уравнений с разным количеством аргументов. Анализ свойств непрерывности функции.

    лекция, добавлен 26.01.2014

  • Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.

    методичка, добавлен 14.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.