Круглые геометрические тела
Понятие цилиндра, виды сечений, площадь полной и боковой поверхности. Основные формулы для нахождения объёма и площади конуса. Радиус, диаметр, хорда сферы. Касательная плоскость к сфере. Историческая справка по теме. Геометрические формы в архитектуре.
Подобные документы
Сущность задачи на нахождение геометрического места точек пространства. Серединная плоскость скрещивающихся прямых. Гиперболический параболоид как поверхность второго порядка. Окружность и сфера Аполлония. Метод в стереометрических задачах на построение.
реферат, добавлен 24.12.2013- 102. Элементы теории поля
Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.
лекция, добавлен 18.10.2013 История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010Полное приращение функции. Полный дифференциал функции. Касательная плоскость и нормальный вектор. Точки экстремума функции. Частные производные первого и второго порядка от функции. Направляющие косинусы вектора. Тангенс угла наклона касательной.
контрольная работа, добавлен 06.06.2012- 105. Площади фигур
Понятие термина "геометрия", история возникновения и развития. Геометрия Эйнштейна — Минковского. Роль геометрии в естествознании. Термин “площадь” и ее основные измерения. Старые меры площадей. Теоремы площадей фигур и способы решения задач по ним.
реферат, добавлен 04.12.2008 Правила измерения геометрических величин. Методика изучения длин, величин углов, площадей и объемов фигур. Расчет радиуса описанной окружности. Определение биссектрисы угла треугольника. Использование теоремы Пифагора для нахождения гипотенуз и катетов.
задача, добавлен 19.12.2013Преобразование линии, фигуры, плоскости. Определение и виды движения. Особые свойства переноса. Понятие центральной и осевой симметрии. Доказательство признаков равенства треугольников. Использование поворота отрезков при решении геометрических задач.
реферат, добавлен 03.10.2019Использование традиционной формы вида усеченной пирамиды в строительстве древнеегипетских пирамид. Правила вычисления и построения правильной усеченной пирамиды, а также расчет площади через полупроизведение суммы периметров оснований и апофемы.
реферат, добавлен 12.03.2014Классификация плоских и объемных фракталов, их размерность и основные принципы построения. Алгоритм визуализации в геометрические формы при помощи программы "3D моделирование". Модуль генерации точек пространства, принадлежащего трехмерному фракталу.
статья, добавлен 30.07.2017- 110. Степенные ряды
Способ определения радиуса сходимости степенного ряда. Остаточный член формулы Тейлора, записанный в форме Лагранжа. Простое достаточное условие разложимости функции в ряд Тейлора. Дифференцирование степенных рядов для нахождения сумм некоторых рядов.
курсовая работа, добавлен 23.04.2011 Частные производные функции нескольких переменных. Градиент функции, касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных. Метод множителей Лагранжа. Решение задач нелинейного программирования с двумя переменными.
учебное пособие, добавлен 17.04.2013Основная задача дифференциального исчисления. Нахождение углового коэффициента касательной к графику кривой. Максимумы и минимумы. Формулы нахождения производных. Линейные аппроксимации. Изучении площадей криволинейных плоских фигур. Частные производные.
лекция, добавлен 21.04.2010- 113. Свойства призмы
Понятие призмы как геометрического тела, ее свойства, сфера применения и способ расчета ее площади. Измерение объемов. Краткий обзор развития геометрии. Симметрия в пространстве. Свойства боковых ребер и поверхностей призмы. Расстояние между плоскостями.
презентация, добавлен 20.05.2012 Элементы, свойства и сечения конуса. Исследование вклада школы Платона в развитие геометрии. Великие книги о конических сечениях. Способ вычисления объема геометрической фигуры. Построение прямого конуса. Решение задач на нахождение элементов конуса.
презентация, добавлен 28.11.2014Основные линии чертежа, особенности их начертания в соответствии с государственным стандартом, правила его оформления. Основные способы проецирования. Виды чертежа и соответствующие им проекции. Разрезы, их отличие от сечений, виды разрезов и сечений.
курс лекций, добавлен 22.02.2010- 116. Пьер де Ферма
вникая в геометрические построения древних, Пьер де Ферма совершает открытие: для нахождения максимумов и минимумов площадей фигур не нужны сложные чертежи. Всегда можно составить и решить алгебраическое уравнение, корни которого определяют экстремум.
доклад, добавлен 19.11.2008 Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.
курсовая работа, добавлен 13.11.2011- 118. Конус
История открытия и исследований конуса как одной из основных геометрических фигур, образованной вращением прямоугольного треугольника около одного из его катетов, его основные свойства. Понятие усеченного конуса. Применение знаний о конусе на практике.
практическая работа, добавлен 26.09.2013 Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.
контрольная работа, добавлен 09.03.2015Сущность и признаки вписанных и описанных шаров и сфер. Формулы для определения радиуса шара в случае его вписания в многогранник, цилиндр, конус, и описания вокруг пирамиды, параллелепипеда, призмы. Формула для нахождения радиуса сферы в этом же случае.
презентация, добавлен 03.03.2013Определение и свойства многогранников: призмы, параллелепипеда и пирамиды. Важнейшие теоремы общей теории выпуклых многогранников. Правила нахождения площади и объема поверхности многогранников. Понятие, свойства и число правильных многогранников.
реферат, добавлен 26.05.2012- 122. Интерполяция функций
Интерполяция как процесс нахождения многочлена не выше n-ой степени, ее содержание и предъявляемые требования, основные этапы и значение. Особенности интерполяционной формулы Лагранжа и Ньютона. Остаточный член интерполяции, методика его нахождения.
лекция, добавлен 08.09.2013 Анализ методологических подходов начертательной геометрии и компьютерного графического моделирования. Последовательность операций выполнения геометрической модели тела традиционными способами и средствами компьютерного графического моделирования.
статья, добавлен 23.02.2021- 124. Длина дуги кривой
Пространственная кривая векторной функции. Расчет длины дуги полукубической параболы. Изучение функций скалярных уравнений. Объем тела по известной площади поперечного сечения. Изучение поверхности тела вращения. Периметры окружности и длина образующей.
лекция, добавлен 17.01.2014 - 125. Теория вероятностей
Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013