Устойчивоподобные свойства инвариантных множеств динамических систем
Решение проблемы о структуре окрестности притягивающих, слабо притягивающих и неасимптотически устойчивых инвариантных множеств. Классификация компактных и замкнутых инвариантных множеств. Метод знакопостоянных функций Ляпунова для динамических систем.
Подобные документы
Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.
шпаргалка, добавлен 27.10.2013Понятие и классификация динамических систем. Исследование кривых, определяемых дифференциальными уравнениями. Линейный анализ устойчивости динамических систем. Математический анализ бифуркации "двукратное равновесие". "Мягкие" и "жесткие" бифуркации.
курсовая работа, добавлен 03.10.2017- 28. Множества
Понятие и структура множеств как совокупности объектов, объединенных некоторым признаком, свойством. Их основные элементы и направления математического исследования, способы задания. Изображение множеств и существующие операции, проводимые над ними.
методичка, добавлен 15.11.2013 Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.
статья, добавлен 26.04.2019Рассмотрение примера графа для пояснения логики поиска всех максимальных независимых множеств. Метод генерации всех максимальных независимых множеств графа. Иллюстрация задачи о наименьшем покрытии. Поиск оптимального паросочетания в двудольном графе.
презентация, добавлен 09.09.2017Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.
учебное пособие, добавлен 15.10.2016Множество как одно из ключевых понятий математики, в частности, теории множеств и логики. Операции разности и дополнения и их антидистрибутивность относительно операций объединения и пересечения. Множества высших мощностей. Свойства операции объединения.
реферат, добавлен 20.09.2015- 33. Теории множеств
Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.
лекция, добавлен 29.09.2013 Определение и примеры мощности множеств. Определение бинарного отношения. Описание способов задания отношений. Характеристика свойств бинарных отношений. Изучение отношений эквивалентности и частичного порядка. Анализ свойств отображения функций.
лекция, добавлен 25.12.2016Сущность перспективности математических моделей, учитывающих стохастическую неопределенность и нечеткость. Описание вероятностных множеств в смысле Hirota. Моделирование операций над нечеткими вероятностными множествами. Треугольные нормы и конормы.
статья, добавлен 29.10.2013Введение в теорию множеств. Задачи, связанные с операциями над конечными множествами. Декартово произведение множеств. Основные элементарные функции. Понятия и величины дискретной математики. Элементы теории вероятностей и математической статистики.
лекция, добавлен 07.05.2014Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.
курс лекций, добавлен 28.12.2013Исследование дискретных бризеров в скалярных динамических моделях на плоской квадратной решетке. Особенности построения симметрийно-обусловленных инвариантных многообразий. Показатели устойчивости. Примеры расщепления системы вариационных уравнений.
методичка, добавлен 08.09.2015Поиск способа представления системы как совокупности взаимосвязанных множеств. Обоснование принципов геометрической интерпретации понятий "элемент системы" и "система". Аналогия между геометрией и теорией информации. Информационные свойства пространства.
статья, добавлен 26.04.2017Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Современные рассуждения, демонстрирующие противоречивость наивной теории множеств. Предложенный Б. Расселом "парадокс Тристрама Шенди". Нетривиальные следствия аксиомы выбора. Рассмотрение рядов квадратов натуральных чисел, степеней двойки, факториалов.
статья, добавлен 15.02.2019- 42. Нечеткая логика
Форма классической логики и теории множеств, базирующиеся на понятии нечёткого множества. Применение нечетких множеств в экономическом, финансовом анализе и в современных технологиях управления. Алгоритм по формализации задачи в терминах нечеткой логики.
презентация, добавлен 29.06.2022 Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.
контрольная работа, добавлен 29.03.2017Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.
статья, добавлен 26.04.2019Основные идеи системной нечеткой интервальной математики. Доказательство теорем, показывающих, что нечеткие множества и результаты операций над ними можно рассматривать как проекции случайных множеств и результатов соответствующих операций над ними.
статья, добавлен 12.05.2017Каноническое отображение самопринадлежащих множеств как неподвижных точек отображения множества всех множеств в себя, порождаемых отношением принадлежности (с учетом транзитивности принадлежности объектов, принадлежащих самопринадлежащему объекту).
статья, добавлен 26.04.2019- 47. Теория множеств
Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.
методичка, добавлен 29.09.2017 Проблема сложности вычислений как одна из важнейших проблем в дискретной математики. Множества и основные операции над ними. Основные законы операций над множествами. Прямые произведения и функции. Теорема Кантора. Матричный способ задания множеств.
реферат, добавлен 16.05.2012- 49. Теория множеств
Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.
реферат, добавлен 19.01.2012 Аксиомы теории Цернело-Френкеля по устранению. Аксиома выбора как один из важнейших теоретико-множественных принципов, альтернативные формулировки аксиомы и её применение. Принцип вполне упорядочивания и лемма Цорна для частично упорядоченных множеств.
реферат, добавлен 11.10.2014