Программа классификации объектов на спутниковых снимках с помощью глубокого обучения
Изучение алгоритмов машинного обучения, направленных на выявление закономерностей в графических данных. Применение сверточных нейронных сетей при работе со спутниковыми изображениями. Создание интерактивной карты для визуализации распознанных объектов.
Подобные документы
Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.
статья, добавлен 15.07.2020Применение информационных технологий в бизнесе. Оценка возможностей нейронных сетей и искусственного интеллекта. Способы обработки и анализа данных больших объемов. Методы представления сведений в цифровой форме. Современная трактовка машинного обучения.
статья, добавлен 09.08.2022Опыт применения нейронных сетей в экономических задачах. Моделирование эмпирических закономерностей по ограниченному числу экспериментальных и наблюдаемых данных. Табличный метод - основа искусственного интеллекта. Мониторинг банковской системы.
реферат, добавлен 15.03.2009Примеры задач компьютерного зрения. Методы машинного обучения. Модели нейронных сетей для задачи мульти-классификации и детектирования. Порядок создания системы детектирования и сегментирования предметов одежды на фото. Нейронные сети, модель SSD300.
статья, добавлен 18.07.2020Разработка и внедрение модели кредитного скоринга с использованием нейронных сетей. Модель будет прогнозировать платежеспособность клиентов банка. Описание реализации. Предобработка входных данных. Процедура обучения нейронной сети, тестирование.
дипломная работа, добавлен 30.06.2017Методика статистического моделирования данных для обучения нейронных сетей с целью прогнозирования прочностных свойств волокнисто-пористых биокомпозитов. Количество данных, необходимое для обучения и тестирования сети. Эмпирическая линейная регрессия.
статья, добавлен 27.04.2017- 57. Разработка методов и алгоритмов оценки надежности сетей телекоммуникации на основе нейронных сетей
Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.
диссертация, добавлен 24.05.2018 Общая характеристика статьи, описывающей алгоритм рекомендации перемещения метода с помощью машинного обучения. Рассмотрение основных особенностей применения методов машинного обучения для автоматической рекомендации рефакторинга "перемещение метода".
дипломная работа, добавлен 01.12.2019- 59. Нейронные сети
Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.
реферат, добавлен 15.03.2009 Создание модели автоматизированного биржевого агента, способной зарабатывать на совершении сделок по покупке и продаже финансовых инструментов на бирже. Генетические алгоритмы обучения для построения простых деревьев решений и объединения их в ансамбли.
дипломная работа, добавлен 26.08.2016Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.
методичка, добавлен 03.07.2017- 63. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Процесс создания и обучения нейронной сети для задачи классификации изображений собак и кошек с использованием TensorFlow и архитектуры MobileNetV2. Описание подготовки и предобработки данных, включая изменение размеров и нормализацию изображений.
статья, добавлен 05.09.2024Назначение графических управляющих элементов NNTool, подготовка данных, создание нейронной сети, обучение и прогон. Разделение линейно-неотделимых множеств. Задача аппроксимации. Распознавание образов. Импорт-экспорт данных. Применение нейронных сетей.
статья, добавлен 23.01.2014Методы и технологии, программное обеспечение для визуализации многоканальных спутниковых снимков, размещенных в каталоге данных дистанционного зондирования Земли. Сервисы оперативной предобработки данных, принимаемых спутниковым приемным комплексом.
статья, добавлен 29.04.2019Возможности современных информационных технологий и Интернета. Разработка клиент-серверной архитектуры построения больших искусственных нейронных сетей. Идентификация, аутентификация пользователей и защита информации в системе дистанционного обучения.
статья, добавлен 27.05.2018Разработан и описан алгоритм процесса конвертирования поступающих в программный комплекс исполняемых файлов в черно-белые изображения, позволяющий сформировать собственный набор данных для обучения нейронной сети на основе полученных изображений.
статья, добавлен 16.05.2022Электрокардиография – простой неинвазивный метод регистрации и исследования электрических полей, образующихся при работе сердца. Сердечнососудистые заболевания - одна из причин смертности людей. Автоэнкодеры - нейронные сети прямого распространения.
диссертация, добавлен 17.07.2020Изучение нейросетевых технологий с помощью симулятора нейронных сетей. Обзор существующих симуляторов нейронных сетей и оценка пригодности их использования в учебном процессе. Авторская разработка учебного нейросимулятора для использования его в ВУЗе.
статья, добавлен 26.04.2019Предсказание трехмерной структуры белка. Предсказание матрицы контактов белка с помощью информации об ограничениях, содержащейся в матрице контактов. Применение моделей машинного обучения XGBoost, CatBoost, Logistic Regression, CNN, ResNet, BiLSTM, LSTM.
дипломная работа, добавлен 25.08.2020Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
автореферат, добавлен 29.03.2018Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.
курсовая работа, добавлен 22.05.2018Основные понятия и существующие алгоритмы машинного обучения, особенности их применения в информационных системах. Подходы к обработке естественного языка. Вызовы и ограничения применения машинного обучения в информационных системах, его перспективы.
курсовая работа, добавлен 20.05.2023Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.
статья, добавлен 30.05.2017