Аппроксимационные модели нестационарных тепловых процессов в неограниченной пластине с несимметричными граничными условиями

Численно-аналитическое моделирование процессов теплопроводности. Рассмотрение несимметричных граничных условий первого и второго рода. Методика аппроксимационного преобразования уравнений в частных производных к системе дифференциальных уравнений.

Подобные документы

  • Новые признаки разрешимости квазилинейных краевых задач для абстрактных функционально-дифференциальных уравнений с необратимой линейной частью и систем квазилинейных операторных уравнений. Разрешимость задач для уравнения с отклоняющимся аргументом.

    автореферат, добавлен 17.12.2017

  • Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.

    дипломная работа, добавлен 21.09.2016

  • Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.

    курсовая работа, добавлен 11.04.2014

  • Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.

    статья, добавлен 30.10.2016

  • Характеристика полиномиальной асимптотики решений. Анализ нормальной системы обыкновенных дифференциальных уравнений. Проверка абсолютной сходимости интеграла с помощью функций пространства. Особенность стремления аргумента бесконечности к полиному.

    статья, добавлен 03.11.2015

  • Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.

    статья, добавлен 07.08.2020

  • Математическое моделирование нестационарных течений. Нахождение конвективного и диффузионного потоков вязкой жидкости. Разработка алгоритма искусственной сжимаемости. Анализ влияния порядка аппроксимации уравнений Навье-Стокса на точность вычислений.

    дипломная работа, добавлен 08.05.2015

  • Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.

    реферат, добавлен 09.02.2017

  • Евклидова плоскость как двумерное вещественное пространство. Инварианты уравнений линий второго порядка. Гиперболы, эллипсы и параболы. Определение вида линий, центров, асимптот и диаметров. Привидение уравнений линий второго порядка к простейшему.

    контрольная работа, добавлен 15.10.2013

  • Построение математической модели, позволяющей описывать и определять тепловые потоки и температурные поля стационарных тепловых процессов, происходящих в неоднородных средах. Аналитические методы решения уравнения теплопроводности и разностная схема.

    контрольная работа, добавлен 29.06.2012

  • Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.

    курсовая работа, добавлен 14.03.2015

  • Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.

    курс лекций, добавлен 23.10.2013

  • Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.

    лабораторная работа, добавлен 16.06.2014

  • Ознакомление с методами обозначения частной производной функции. Определение условий дифференцирования функции. Рассмотрение символики для обозначения частных производных. Исследование теоремы о частных производных. Анализ сущности смешанных производных.

    лекция, добавлен 13.04.2015

  • Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.

    курсовая работа, добавлен 06.04.2014

  • Проведение анализа известных численных методов построения приближений, сходящихся к спектральному радиусу оператора и к собственным векторам. Определение значения спектрального радиуса оператора и разработка алгоритмов решения операторных уравнений.

    автореферат, добавлен 10.12.2013

  • Способы дискретизации уравнений механики и принципы построения сетки в области интегрирования. Численное решение уравнений упругости, содержание и закономерности построения соответствующих моделей. Формирование и значение нерегулярной треугольной сетки.

    диссертация, добавлен 23.12.2013

  • Построение модели теплового баланса для мезосферы и нижней термосферы. Разработка алгоритма численного решения уравнения теплового баланса для нейтральных компонент. Анализ особенностей метода преобразования уравнений непрерывности и теплопроводности.

    автореферат, добавлен 27.11.2017

  • Иван Георгиевич Петровский - известнейший и талантливейший математик XX века: талантливый организатор и общественный деятель, автор современной теории дифференциальных уравнений, многих научных работ которые используются в разных областях математики.

    реферат, добавлен 05.03.2009

  • Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.

    презентация, добавлен 07.05.2020

  • Связь между поверхностными интегралами первого и второго рода, свойства поверхностного интеграла второго рода и формулы Остроградского-Гаусса и Стокса. Поток векторного поля. Физическое приложение поверхностного интеграла как потока векторного поля.

    контрольная работа, добавлен 23.04.2011

  • Численные методы интегрирования дифференциальных уравнений. Метод Эйлера как наиболее простой численный метод решения систем обыкновенных дифференциальных уравнений, основанный на аппроксимации интегральной кривой кусочно-линейной функции Эйлера.

    доклад, добавлен 09.10.2012

  • Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.

    учебное пособие, добавлен 18.09.2012

  • Общие решения дифференциальных уравнений первого и второго порядка. Исследование на абсолютную и условную сходимость знакочередующегося ряда. Поиск области сходимости степенного ряда. Определение теории вероятности изготовления детали, выигрыша в лотерее.

    контрольная работа, добавлен 05.02.2015

  • Описание алгоритма автоматической подстройки шага, учитывающего спектральное условие устойчивости для математических моделей. Дефект точности дифференциальных уравнений в численном решении. Математическое моделирование гидрометеорологических процессов.

    статья, добавлен 28.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.