Специальные функции: функции Бесселя
Рассмотрение специальных классов цилиндрических функций. Гипергеометрическая функция и применение уравнений Бесселя в процессе решения уравнения Лапласа и Гельмгольца в цилиндрических и сферических координатах. Реккурентные формулы для функции Бесселя.
Подобные документы
Тригонометрическая система функций. Формулы интеграла Фурье для различных функций. Применение преобразования Фурье к задачам математической физики, электротехники. Решение уравнения Бесселя, возникающего при разделении переменных. Гармонический анализ.
курс лекций, добавлен 29.09.2014Дослідження розвитку теорiї задач Кошi. Характеристика еволюційних рівнянь, які містять псевдо-Бесселеви оператори в класах початкових умов. Розгляд просторів математичних функцій. Обґрунтування властивостей перетворення Бесселя та Фур’є-Бесселя.
автореферат, добавлен 29.10.2013Исследование нелокальной задачи, краевые условия которой существенно зависят от изменения коэффициента уравнения при младшей производной. Доказательство однозначной разрешимости поставленной задачи. Частное решение модифицированного уравнения Бесселя.
статья, добавлен 31.05.2013Порядок запровадження на полярнiй осi з двома точками спряження гiбридних iнтегральних перетворень згідно формулам Фур'є, Бесселя та Лежандра. Теореми про iнтегральне зображення кусково-неперервних, абсолютно сумовних функцiй обмеженої варiацiї.
автореферат, добавлен 09.11.2013Использование свойств показательной и логарифмической функций для решения уравнений и неравенств. Практическое применение метода введения новых переменных, подстановки и некоторых специальных методов для решения уравнений, систем уравнений и неравенств.
реферат, добавлен 12.12.2013Функция Гаусса как плотность распределения вероятности случайной величины, являющаяся математическим показателем. Применение таблицы значений функции Лапласа для нахождения нормального распределения. Определение интегральной формулы Муавра-Лапласа.
доклад, добавлен 10.02.2014Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.
презентация, добавлен 21.09.2013Задание булевых функций от переменных с помощью таблицы истинности, определение формулы, виды важнейших равносильностей (законов) алгебры логики. Равносильные формулы, законы равносильности, логические уравнения. Разложение булевых функций по переменным.
лабораторная работа, добавлен 09.08.2010Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
курсовая работа, добавлен 09.07.2015Общая характеристика методов исследования вариационных задач. Рассмотрение необходимых и достаточных условий справедливости интегро-дифференциального неравенства Виртингера. Знакомство с основными особенностями модифицированной функции Бесселя I рода.
статья, добавлен 26.04.2019Розв’язання задачі Коші у просторах узагальнених функцій типу. Достатні умови, які повинна задовольняти початкова узагальнена функція. Побудова теорії задачі Коші для еволюційних рівнянь з оператором Бесселя нескінченного порядку в класах початкових умов.
автореферат, добавлен 13.07.2014Решение матричных уравнений по формулам Крамера, методом Гаусса, с помощью обратной матрицы. Нахождение производных функций уравнений. Исследование функции и построение графиков. Вычисление интегралов, применение метода интегрирования функции по частям.
контрольная работа, добавлен 23.04.2022Построение гамма-функции, отталкиваясь от функционального уравнения. Основные свойства гамма-функции и ее использование (вычисление эйлерова интеграла первого рода, или бета-функции). Асимптотическое поведение гамма-функции и получение формулы Стирлинга.
курсовая работа, добавлен 22.04.2011Рассмотрение основных свойств и графиков обратных тригонометрических функций. Существенные принципы преобразования выражений, содержащих эти функции. Обзор исторической справки. Изучение примеров решения уравнений. Задание различного уровня сложности.
презентация, добавлен 04.12.2014Вычисление пределов функций. Правила вычисления производных. Нахождение наибольших и наименьших значений функции на отрезке. Запись уравнения касательной и нормали в общем виде. Область определения функции. Пересечение с осями координат, нули функции.
контрольная работа, добавлен 29.04.2019Три вида уравнений второго порядка, допускающих понижение степени. Порядок введения новой функции. Условие преобразования исходного уравнения в неполное уравнение первого порядка. Пример решения дифференциального уравнения заданного вида, расчет функции.
презентация, добавлен 17.09.2013Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.
практическая работа, добавлен 20.12.2011Единичная функция Хевисайда и импульсная функция Дирака. Характеристика свойств аналитичности преобразования Лапласа. Первая и вторая теоремы разложения. Обратное преобразование Лапласа. Примеры восстановления непрерывной функции-оригинала по изображению.
презентация, добавлен 23.09.2017Расчет формулы преобразования Лапласа для алгебраизации дифференциальных уравнений, ее свойства: линейность, дифференцирование оригинала, свертка, запаздывание, сдвиг и масштабирование. Расчет функций Хевисайда и Дирака и применение теоремы о вычетах.
презентация, добавлен 20.02.2014Графики степенной функции. Свойства функции. Ознакомление с понятиями степени, решениями иррациональных уравнений, показательной и производной степенной функций, тождественных преобразований логарифмических неравенств. График показательной функции.
контрольная работа, добавлен 27.03.2018Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.
курсовая работа, добавлен 09.03.2012Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.
учебное пособие, добавлен 18.09.2012Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.
презентация, добавлен 07.05.2014Рассмотрение понятий: аргумента, области определения. Методика изучения линейной, квадратной и кубической функции. Изучение уравнений параболического типа. Основные характеристики математических функций. Достаточные условия экстремума уравнения.
курсовая работа, добавлен 05.05.2015Изучение особенностей и причин создания логарифмов. Рассмотрение методов их решения. Основы расчета области определения логарифмической функции. Рассмотрение функций формулы преобразования. Характеристика аспектов метода введение новой переменной.
презентация, добавлен 16.01.2014