Застосування нейронних мереж у сучасних методах прогнозування енергоспоживання
Розгляд використання нейронних мереж для прогнозування енергоспоживання. Введення основних моделей нейронної мережі, яка здійснює ідентифікацію графіків. Додаткові шляхи підвищення точності прогнозування. Поточні режими електроенергетичної системи.
Подобные документы
- 1. Метод аналізу і підвищення якості навчальних вибірок нейронних мереж для прогнозування часових рядів
Розробка формалізованих основ формування навчальних вибірок для нейронних мереж в задачах прогнозування часових рядів. Формальний опис процесу формування НВ для задачі прогнозування. Дискретизація опису розпізнаваної ситуації для навчальних наборів.
автореферат, добавлен 28.06.2014 Біологічний прототип і штучний нейрон. Найпростіші нейронні мережі. Дослідження нервової системи. Вибір структури нейронної мережі. Класифікація нейронних мереж. Задачі для вирішення нейронних мереж. Функції, які не реалізуються одношаровою мережею.
отчет по практике, добавлен 02.11.2017Визначення основних особливостей та вимог щодо побудови нейронних мереж. Розгляд підходів до їх використання в процесі страхового андеррайтингу як повноцінної заміни андеррайтера та у перехідний період. Опис основних моделей навчання нейронних мереж.
статья, добавлен 28.12.2017Узагальнення регресійних нейронних мереж Д. Шпехта, які отримали широке розповсюдження для вирішення задач прогнозування та ідентифікації. Навчання мережі, що відбувається шляхом установлення центрів активаційних функцій у точках з координатами векторів.
статья, добавлен 19.06.2018Аналіз існуючих методів і алгоритмів, спрямованих на прискорення і підвищення якості структурного та параметричного синтезу прогнозуючих штучних нейронних мереж зі зворотним поширенням помилки. Розробка механізмів, що дозволяють істотно прискорити процес.
автореферат, добавлен 05.08.2014Аналіз можливості використання різних типів нейронних мереж для розпізнавання "ідеального співрозмовника" серед користувачів соціальних мереж. Навчання нейронних мереж на основі експертних знань та модифікація класичної мережі ймовірнісного типу.
статья, добавлен 27.07.2016Основні завдання, вирішення яких актуально в комплексах для медичної діагностики та прогнозування за циклічними біометричними сигналами. Алгоритми, що моделюють розповсюдження сигналів по нейронах і синапсах нервової системи - основа нейронних мереж.
статья, добавлен 27.07.2016Дослідження та аналіз методів розпізнавання символів за допомогою нейронних мереж. Розробка інтелектуального модулю штучних нейронних мереж, що функціонує за принципом перцептрона, та має можливість розпізнавати рукописні символи із зашумленістю до 40%.
статья, добавлен 29.01.2019Аналіз програмного модуля для розрахунку ймовірності роботи та відмови за заданої умови готовності ізотропних симетричних ієрархічних розгалужених систем. Прогнозування характеристик надійності за допомогою неітераційної штучної нейронної мережі.
статья, добавлен 20.01.2017Підвищення ефективності багатокритеріального прийняття рішень на основі результатів прогнозування часових рядів з подвійною довгою пам’яттю. Довга короткочасна пам’ять як архітектура рекурентних нейронних мереж. Широке упровадження сучасних технологій.
автореферат, добавлен 30.07.2015У роботі здійснено аналіз сучасних досягнень у галузі штучних нейронних мереж, машинного навчання та обчислювального інтелекту, в основі чого лежить перцептрон як кібернетична модель сприйняття інформації мозком. Сфери застосування нейронних мереж.
статья, добавлен 26.04.2023На основі проведених експериментів дослідження доцільності використання даних методів для різних типів даних та архітектури нейронних мереж. Характеристика існуючих методів оптимізації та типів розподілених обчислень для тренування нейронних мереж.
статья, добавлен 28.10.2020Аналіз сучасних досягнень у галузі штучних нейронних мереж, машинного навчання та обчислювального інтелекту, в основі чого лежить перцептрон як кібернетична модель сприйняття інформації мозком. сфери застосування розробок у галузі штучних нейронних мереж.
статья, добавлен 17.12.2022Характеристика будови біологічного нейрона. Порядок навчання нейронної мережі. Основний аналіз схем нейромережевого керування, заснованих на використанні підходів. Особливість розробки системи керування насосною станцією на основі нейронної мережі.
статья, добавлен 24.01.2020Дослідження характеристики штучних нейронних мереж на прикладі задачі розпізнавання і класифікації. Характеристика особливостей функціонування різних архітектур в межах методу зворотного поширення похибки. Метод організації штучних нейронних мереж.
статья, добавлен 14.09.2016Аналіз штучної нейронної мережі на базі персептрону. Окреслення задач, які потрібно вирішити під час вибору структури штучної нейронної мережі. Моделювання мережі з оцінкою контрольної помилки та використанням додаткових нейронів або проміжних шарів.
статья, добавлен 07.06.2024Порівняння програмних та апаратних підходів, висвітлюючи структуру класичних нейронних мереж і їх можливого апаратного втілення. Дослідження апаратної реалізації моделей штучної нейронної мережі, зокрема з використанням операційних підсилювачів.
статья, добавлен 09.12.2024Поняття експертної системи. Принципи функціонування і навчання персептрона. Функції створення нейронних мереж. Процес синаптичної адаптації. Алгоритм роботи мережі Хопфілда. Сутність прогнозу та прогнозування. Короткі відомості про генетичні алгоритми.
методичка, добавлен 17.10.2014Побудування архітектури нейронної мережі та її математичної моделі, що адаптована до прогнозування котировок інструментів валютного ринку. Врахування особливостей подання часового ряду котировок у виді "японських свічок" при побудові нейронної мережі.
статья, добавлен 09.01.2019- 20. Прогнозування та емуляція нестаціонарних послідовностей за допомогою штучних вейвлет-нейронних мереж
Дослідження існуючих методів емуляції і прогнозування нестаціонарних об’єктів і сигналів довільної природи за умов апріорної та поточної невизначеності. Розробка синтезу універсальної активаційної функції на основі генератора аналітичних вейвлетів.
автореферат, добавлен 11.08.2014 - 21. Моделі та методи розпізнавання класів багатопараметричних об’єктів на основі штучних нейронних мереж
Розробка архітектури та методик використання інтелектуальної системи розпізнавання образів на основі штучних нейронних мереж із конкуренційним навчанням. Моделі для модифікованих варіантів карт із самоорганізацією Кохонена та мереж зустрічного поширення.
автореферат, добавлен 27.07.2014 Дослідження можливості використання моделі нейронних мереж штучного інтелекту при підготовці авіаційних спеціалістів. Характеристика етапів синтезу нейромережевої моделі залежності залишкових знань суб’єктів навчання від їх індивідуальних здібностей.
статья, добавлен 16.11.2017Архітектура рідких нейронних мереж, їх потенціал у сучасних технологіях. основні концепції та принципи роботи LNN-мереж, їх потенційні застосування в різних галузях: від робототехніки до медицини та промисловості. Переваги та обмеження цієї технології.
статья, добавлен 27.07.2024Порівняння ефективності тесту хі-квадрат і методів на основі нейронної мережі в оцінці випадковості числових послідовностей. Генерація випадкових наборів даних, створення та навчання моделей нейронних мереж, а також комплексний аналіз їх ефективності.
статья, добавлен 18.05.2024Аналіз особливостей роботи протоколу обміну ключами з використанням взаємного навчання нейронних мереж. Існуючі атаки на протокол. Розподіл часу синхронізації нейронних мереж. Виявлення слабких місць протоколу, висновки стосовно його захищеності.
статья, добавлен 14.07.2016