Комплексные числа и комплексные матрицы
Понятие комплексного числа, его геометрическая интерпретация. Модуль комплексного числа, свойства модуля и аргумента. Операции сложения, вычитания, умножения и деления комплексных чисел, возведение в степень и извлечение корня. Свойства эрмитовой матрицы.
Подобные документы
История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011Комплексные числа и их геометрическая интерпретация, свойства модуля и аргумента. Математические действия с ними: сложение и вычитание, умножение и деление, возведение в степень и извлечение корня. Решение квадратного уравнения с комплексным неизвестным.
курсовая работа, добавлен 26.12.2011Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.
реферат, добавлен 02.04.2022Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Свойства комплексных чисел. Описание действий с ними. Основная теорема алгебры. Модуль комплексного числа.
реферат, добавлен 13.12.2022История развития комплексных чисел. Соглашение о комплексных числах. Сложение, деление и вычитание комплексных чисел, их геометрическое изображение. Модуль и аргумент комплексного числа. Геометрический смысл сложения и вычитания комплексных чисел.
доклад, добавлен 21.10.2011Общее понятие и признаки комплексного числа. Тригонометрическая форма комплексного числа. Произведение двух комплексных чисел, формула его вычисления. Корни n-ой степени комплексного числа. Действительная и комплексная степень комплексного числа.
реферат, добавлен 21.08.2017Геометрическая интерпретация комплексного числа. Арифметические операции над комплексными числами. Геометрическое изображение суммы, вычитание и деление, геометрическое изображение разности, тригонометрическая форма, свойства модуля и аргумента.
курсовая работа, добавлен 29.11.2014Сущность и введение мнимой единицы, понятие комплексного аргумента. Особенности алгебраической, тригонометрической и экспоненциальной формы записи комплексного числа. Вычитание, сложение, деление и умножение комплексных чисел, их извлечение из корней.
презентация, добавлен 16.01.2018Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.
лекция, добавлен 09.07.2015История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.
контрольная работа, добавлен 30.01.2010Алгебраические операции над комплексными числами и комплексное сопряжение. Показательная функция комплексного аргумента и применение формулы Эйлера. Геометрическая интерпретация комплексных чисел. Разложение многочлена с действительными коэффициентами.
курс лекций, добавлен 23.10.2013Понятия о комплексных числах, история их применения при решении линейных дифференциальных уравнений и вычислении интегралов. Правила сложения, вычитания, умножения и деления комплексных чисел. Порядок решения уравнений с комплексными переменными.
реферат, добавлен 06.03.2010Системы общих комплексных чисел. Решение уравнений второй и высших степеней. Применение двойных чисел, формулы их сложения, вычитания, умножения и деления двойных чисел. Ориентированные прямые плоскости Лобачевского. Предельный случай пересекающих прямых.
реферат, добавлен 30.11.2015Операции над комплексными числами. Проблема разрешимости любого квадратного уравнения как одна из причин введения комплексных чисел. Геометрическая интерпретация комплексных чисел, их тригонометрическая форма. Векторная интерпретация комплексных чисел.
реферат, добавлен 18.01.2011Определение понятия "комплексные числа", их алгебраическая форма, вычисления суммы и произведения, основные этапы изучения. Тригонометрическая форма комплексного числа, его геометрическая модель. Основные действия: сложение, вычитание, умножение, деление.
презентация, добавлен 26.02.2015Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.
учебное пособие, добавлен 04.02.2012Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.
презентация, добавлен 05.10.2015Изучение комплексных чисел в рамках школьной математической программы. Описание правил сложения, вычитания и других действий. Вывод формул сокращенного умножения. Решение примеров с комплексными числами. Представление множества в виде кругов Эйлера.
реферат, добавлен 02.05.2019Определение и свойства модуля (абсолютной величины) действительного числа. Расстояние между точками числовой прямой. Графическое изображение на прямой окрестности точки как множества решений неравенства. Изучение правил сложения и вычитания модулей.
презентация, добавлен 21.09.2013Геометрическое представление комплексного числа. Модуль и аргумент в математике. Формула Муавра и правила извлечения корней. Алгебраическая, тригонометрическая и показательная формы комплексных чисел. Рассмотрение функций комплексного переменного.
реферат, добавлен 15.10.2021- 21. Числовые системы
Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.
учебное пособие, добавлен 16.06.2015 Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.
реферат, добавлен 17.01.2011Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.
курс лекций, добавлен 20.08.2017Дифференциальные уравнения и геометрическая интерпретация решения. Особенность системы линейных дифференциальных уравнений с постоянными коэффициентами. Возведение в степень и извлечение корня, понятие об интеграле функции комплексного переменного.
контрольная работа, добавлен 22.11.2014Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.
конспект урока, добавлен 20.09.2018