Регрессионные модели и линеаризация
Нелинейные зависимости, поддающиеся непосредственной линеаризации. Сущность правила Крамера или Гаусса и кривой Лаффера. Пример гиперболической зависимости. Описание кривой Энгеля. Экспоненциальная (показательная) зависимость и степенная модель.
Подобные документы
Понятие реки как водного потока, протекающего в долине, и характеризующегося достаточно большими размерами. Экспоненциальная зависимость S(L) для правых притоков бассейна р. Кама. Численные значения коэффициентов всех зависимостей по рассмотренным рекам.
статья, добавлен 26.03.2020Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Понятие зависимости между простыми числами в работах Лежандра и Гаусса. Методы суммирования упорядоченных множеств. Асимптотический анализ данной функции в трудах русского математика П. Чебышева. Ложности функции бесконечного множества по Литлвуду.
статья, добавлен 21.05.2016Управление технологическим процессом во времени. Поиск вариантов сокращения длительности производственного цикла. Использование марковской теории при разработке модели систем массового обслуживания. Построение графика зависимости вероятности отказа.
курсовая работа, добавлен 28.07.2015Пересечение двух многогранников и общий алгоритм построения лини пересечения поверхностей. Пересечение гранной и кривой поверхности. Описание методов вспомогательных секущих плоскостей и сфер. Особенности пересечения поверхностей вращения, теорема Монжа.
контрольная работа, добавлен 15.04.2016- 106. Лінійна алгебра
Викладення основ лінійної алгебри: означення матриці порядку m х n, визначника 2-го та 3-го порядку; правило трикутника; властивості визначників; теорема Лапласа; матриці та дії на ними; системи лінійних алгебраїчних рівнянь; методи Крамера та Гаусса.
лекция, добавлен 30.04.2014 Основные понятия матрицы: элементы, линейные матричные операции. Условие совместности системы линейных уравнений. Метод последовательного исключения переменных Гаусса — применение и модификации, достоинства, устойчивость. Неоптимальность метода Крамера.
презентация, добавлен 11.12.2013- 108. Конхоида Никомеда
Построение конхоиды Никомеда - кривой, получающейся увеличением радиус-вектора точек прямой на некую постоянную величину. Первое исследование конхоиды, особенности формы. Описание способа нахождения точек перегиба конхоиды, найденный Гюйгенсом и Ферма.
реферат, добавлен 06.06.2016 Квазискалярное произведение двух точек на проективной плоскости. Общий вид формулы Эйлера. Пример телепортации прямой из гиперболической геометрии в эллиптическую. Внутренняя и наружная область окружности на сфере. Части тора, особенности геометрии.
статья, добавлен 03.05.2012Изучение метода последовательного исключения переменных. Элементарные преобразования строк расширенной матрицы. Доказательство теоремы Крамера. Нахождение обратной матрицы методом Гаусса. Определение числовых значений главных неизвестных через свободные.
лекция, добавлен 29.09.2013- 111. Линейная алгебра
Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.
учебное пособие, добавлен 17.04.2013 - 112. Решение СЛАУ
Решение системы линейных алгебраических уравнений (СЛАУ) четырьмя способами: с помощью формул Крамера; обратной матрицы; метода замещения (способом последовательных приближений) и классического метода Гаусса (последовательного исключения переменных).
задача, добавлен 15.01.2014 Решение систем линейных уравнений методом Гаусса, Крамера и обратной матрицы. Геометрия на плоскости и в пространстве, каноническое уравнение прямой. Раскрытие неопределенностей и вычисление пределов. Производные и дифференцирования сложной функции.
контрольная работа, добавлен 22.01.2013Определение уравнения плоскости, проходящей через точку перпендикулярно вектору. Решение системы линейных уравнений по формулам Крамера, матричным способом и методом Гаусса. Решение задач линейного программирования модифицированным симплексным методом.
контрольная работа, добавлен 11.03.2012Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.
контрольная работа, добавлен 22.08.2014Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.
контрольная работа, добавлен 23.06.2020Решение систем линейных уравнений методами Крамера и Гаусса. Аналитическая геометрия на плоскости. Векторная алгебра и аналитическая геометрия в пространстве. Теоремы о пределах. Уравнение высоты, опущенной из точки на плоскость, угол между векторами.
методичка, добавлен 09.04.2012Понятия и свойства системы линейных алгебраических уравнений. Разложение определителя по элементам некоторого ряда. Правило Крамера. Метод Гаусса (последовательного исключения неизвестных). Обратная матрица и ее применение для решения линейных систем.
курсовая работа, добавлен 31.12.2018Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.
лекция, добавлен 12.03.2013- 120. Использование пакета Maple для визуализации экстремалей функционалов двух функциональных аргументов
Особенность построения решения в евклидовом пространстве. Главная сущность составления системы уравнений Эйлера. Основной анализ определения функционала с помощью выбора пространственной кривой. Характеристика изображения плоскостей в пакете Maple.
лекция, добавлен 02.05.2015 - 121. Решение уравнений
Решение уравнения по формулам Крамера, с помощью обратной матрицы, методом Гаусса. Приведение уравнения к каноническому виду. Нахождение длин сторон треугольника по координатам его вершин. Нахождение длин и угла между векторами, их запись в системе орт.
контрольная работа, добавлен 07.03.2016 Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.
лекция, добавлен 09.09.2017- 123. Решение матриц
Этапы нахождение определителя матрицы, минора и алгебраического дополнения к элементам матрицы. Особенности решение системы линейных алгебраических уравнений методами Крамера и Гаусса. Нахождение собственных чисел и собственных векторов матрицы.
контрольная работа, добавлен 11.04.2009 Главная задача численных методов. Система Линейных Алгебраических Уравнений (СЛАУ), их проблематика. Методы решения поставленных задач. Порядок обращения матриц. Число обусловленности, описание метода Гаусса. Обзор программного модуля для Турбо Паскаль.
курсовая работа, добавлен 21.12.2012Характеристика методів послідовного виключення, Гаусса, Крамера та інших точних, ітераційних та ймовірнісних методів розв'язування систем лінійних алгебраїчних рівнянь. Приклади та алгоритм їх рішення. Обчислення визначника матриці за правилом Саррюса.
контрольная работа, добавлен 13.12.2013