Графика в нейронных сетях

Ознакомление со структурной схемой нейрона. Анализ методов отражения сути биологических нейронных систем. Исследование сравнительных характеристик нейрокомпьютеров и традиционных компьютеров. Рассмотрение формальной модели искусственного нейрона.

Подобные документы

  • Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.

    курсовая работа, добавлен 04.12.2012

  • Основные понятия об искусственных нейронных сетях, дискретных преобразованиях Фурье и потоковых кодированиях информации. Формальная модель нейрона Мак-Каллока-Питтса и нейрона с альтернативными синапсами. Дискретное преобразование Фурье. Метод Хебба.

    автореферат, добавлен 08.02.2013

  • Анализ модели нейрона, обладающей возможностью запоминания значения специально вводимого параметра состояния нейрона. Механизм реализации двухуровневой схемы эволюционирования нейронных сетей. Описание предлагаемых алгоритмов их функционирования.

    статья, добавлен 19.12.2017

  • Моделирование поведения живых существ в процессе исследований в области искусственного интеллекта. Особенности искусственного нейрона и структура нейронных сетей. Осуществление диагностики с помощью использования пакета Statistica Neural Networks.

    статья, добавлен 29.01.2016

  • Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.

    дипломная работа, добавлен 19.11.2015

  • Определение сущности системы поддержки принятия решений. Ознакомление с понятием "система искусственного интеллекта". Рассмотрение особенностей использования нейронных сетей в финансах и бизнесе. Анализ преимуществ прогнозирования на нейронных сетях.

    курсовая работа, добавлен 17.10.2021

  • Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.

    презентация, добавлен 03.12.2013

  • Смысл постулата Хебба в том, что если изначально наблюдается причинно-следственная связь между активациями пре- и постсинаптического нейрона, то эта связь имеет тенденцию к усилению. Следствия, исходящие из правила Хебба. Структурная схема нейрона.

    презентация, добавлен 20.05.2020

  • Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.

    дипломная работа, добавлен 14.12.2019

  • Исследование понятия "искусственный нейрон". Характеристика модели нейрона Маккалока-Питтса. Моделирование логических операций "конъюнкция" и "дизъюнкция", оценка невозможности решения проблемы "исключающего или" с помощью нейрона с двумя входами.

    лабораторная работа, добавлен 19.06.2022

  • Обзор искусственных нейронных сетей, состоящих из множества взаимодействующих простых процессоров и представляющих собой устройства параллельных вычислений. Анализ структуры связей детали сетевой конструкции. Вычисления сигналов и значений нейронов.

    лекция, добавлен 21.10.2013

  • Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.

    статья, добавлен 12.07.2021

  • Нейронные сети - одно из приоритетных направлений исследований в области искусственного интеллекта. Модель нейрона и его элементы. Классификация и свойства нейронных сетей, концептуальные подходы к их обучению. Представление знаний в нейронной сети.

    реферат, добавлен 29.12.2011

  • Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.

    автореферат, добавлен 29.03.2018

  • Свойства биологического нейрона. Алгоритм обратного распространения ошибки. Обучение с учителем. Виды нейронных сетей и их свойства и преимущество. Разработка системы тестирования. Выбор программных средств для разработки. Структура базы данных и системы.

    дипломная работа, добавлен 07.08.2018

  • Представление знаний для решения интеллектуальных проблем. Принцип выбора потенциального дерева решения. Искусственные нейронные сети. Принцип работы искусственного нейрона, его формальная модель. Применение нейронных сетей, классификация нейронов.

    учебное пособие, добавлен 26.08.2015

  • Рассмотрение и характеристика главных особенностей метода использования искусственных нейронных сетей. Ознакомление со схемой Персептрона. Исследование и анализ основных принципов распознавания образов, которые применяются в вычислительной технике.

    контрольная работа, добавлен 26.05.2016

  • Понятие, структура и основные компоненты нейронных сетей, применение множества простых процессоров для их построения. Варианты наиболее распространенных архитектур искусственных НС. Правило вычисления сигнала активности и их распространение в сети.

    лекция, добавлен 28.08.2013

  • Характеристика мультиагентных систем на примере конкретной робототехнической системы. Анализ основных логических вычислений рассмотренной мультиагентной системы, которые выполняются при помощи нейронных сетей. Изучение задачи исследования местности.

    статья, добавлен 29.07.2018

  • Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.

    методичка, добавлен 03.07.2017

  • Развитие систем искусственного интеллекта, изучение устройства нейронных систем и применение полученных знаний в технике и медицине. Применение нейрокомпьютеров при создании роботов, преобразование информационной основы личности в компьютерные системы.

    реферат, добавлен 24.01.2014

  • Анализ понятия интеллектуальных информационных технологий - средства для разработки интеллектуальных систем. Ознакомление с историей создания перцептрона, который имитирует процессы человеческого мышления. Исследование структуры искусственного нейрона.

    контрольная работа, добавлен 19.06.2015

  • Интерпретация выходных сигналов искусственных нейронных сетей при применении нелинейной нормализации, вычисляемой с помощью часто применяемых на практике эвристик. Исследование принципов организации и функционирования биологических нейронных сетей.

    статья, добавлен 31.08.2018

  • Возникновение идеи нейронных сетей. Попытки ученых воспроизвести способность нервных биологических систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга. Рассмотрение научных направлений по созданию интеллектуальных систем.

    реферат, добавлен 24.03.2012

  • Примеры определения масштаба функций в нейронных сетях. Математическое описание цифровых моделей в нейронных сетях. Выбор интервала дискретизации, описание процесса квантования по времени. Оптимальная коррекция динамических погрешностей измерений.

    контрольная работа, добавлен 15.01.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.