Группы, кольца, поля

История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.

Подобные документы

  • Примеры алгебраических групп матриц, классические матричные группы: общая, специальная, симплектическая и ортогональная. Компоненты алгебраической группы. Ранг матрицы, возвращение к уравнениям, совместимость. Линейные отображения, действия с матрицами.

    курсовая работа, добавлен 22.09.2009

  • Основные определения конечного автомата Мили, его специальные классы. Группы и полугруппы, определенные обратимым автоматом без ветвлений. Преобразования, определенные обратимым медленным автоматом конечного типа. Функции перехода без предельного цикла.

    дипломная работа, добавлен 10.06.2011

  • Основные понятия теории полуколец. Определение полукольца. Примеры. Дистрибутивные решетки. Идеалы полуколец. Положительные и ограниченные полукольца. Определение и примеры положительных и ограниченных полуколец. Основные свойства полуколец.

    дипломная работа, добавлен 14.06.2007

  • Численные методы решения систем линейных алгебраических уравнений, алгоритмы, их реализующие. Нормы матриц и векторов, погрешность приближенного решения системы и обусловленность матриц. Интеграционные методы решения: методы простой итерации, релаксации.

    учебное пособие, добавлен 02.03.2010

  • Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.

    контрольная работа, добавлен 24.06.2009

  • Уравнения Фредгольма и их свойства как классический пример интегральных уравнений с постоянными пределами интегрирования, их формы и степени, порядок формирования и решения. Некоторые приложения интегральных уравнений. Общая схема метода квадратур.

    курсовая работа, добавлен 25.11.2011

  • Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

    курсовая работа, добавлен 21.10.2011

  • Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.

    курсовая работа, добавлен 10.04.2014

  • Понятие и свойства n-арных операций, универсальной алгебры и сигнатуры. Характеристика централизаторов конгруэнции универсальных алгебр и доказательство их основных свойств. Нильпотентные и абелевы алгебры, формулировка и метод доказательства их лемм.

    курсовая работа, добавлен 22.09.2009

  • Краткое математическое описание циклических кодов с точки зрения алгебры конечных полей, которого вполне достаточно для решения задачи нахождения порождающего полинома кода, используя корни. Полиномиальное представление двоичных чисел. Определение поля.

    контрольная работа, добавлен 01.01.2011

  • Уравнения, системы линейных, квадратных и третьей степени уравнений. Уравнения высших степеней сводящиеся к квадратным. Системы уравнений, три переменные. График квадратичной функции, пределы, производные. Интегральное счисление и примеры решения задач.

    шпаргалка, добавлен 22.06.2008

  • Определение дифференциальных уравнений в частных производных параболического типа. Приведение уравнения второго порядка к каноническому виду. Принцип построения разностных схем. Конечно-разностный метод решения задач. Двусторонний метод аппроксимации.

    дипломная работа, добавлен 24.01.2013

  • Теоретические аспекты обучения решению уравнений в 8 классе. Основные направления изучения линий уравнений в школьном курсе алгебры. Методика изучения квадратных уравнений. Методико-педагогические основы обучения решению квадратных уравнений.

    курсовая работа, добавлен 01.07.2008

  • Историческая справка о возникновении и развитии теории неопределенных уравнений. Числовые сравнения и их свойства, а также линейные сравнения с одним неизвестным и методы их решения. Методы решения линейных диофантовых уравнений с двумя неизвестными.

    курсовая работа, добавлен 01.07.2013

  • Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.

    реферат, добавлен 09.06.2011

  • Сущность и методика определения алгебраического числа, оценка существующего поля. Рациональные приближения алгебраических чисел. Задача построения уравнения с заданными корнями. Приводимые и неприводимые многочлены. Трансцендентные числа Лиувилля.

    курсовая работа, добавлен 23.03.2015

  • Сущность и содержание теории сравнений. Основные понятия и теоремы сравнения первой степени с одной переменной. Методика сравнения по простому модулю с одним и несколькими неизвестными. Системы уравнений первой степени и основные этапы их решения.

    курсовая работа, добавлен 27.06.2010

  • Итерационные методы (методы последовательных приближений) для решения уравнений. Одношаговые итерационные формулы. Метод последовательных приближений Пикара. Возникновение хаоса в детерминированных системах. Методы решения систем алгебраических уравнений.

    контрольная работа, добавлен 04.09.2010

  • Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.

    презентация, добавлен 08.12.2011

  • Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.

    творческая работа, добавлен 17.10.2009

  • Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.

    курсовая работа, добавлен 13.11.2012

  • Выработка современного абстрактного понятия групп. Простейшие свойства конечных нильпотентных групп. Подгруппа Фраттини конечной группы нильпотентна. Нахождение прямого произведения нильпотентных групп. Бинарная алгебраическая операция на множестве.

    курсовая работа, добавлен 21.09.2013

  • Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.

    курсовая работа, добавлен 21.12.2009

  • Обзор и характеристика различных методов построения сечений многогранников, определение их сильных и слабых сторон. Метод вспомогательных сечений как универсальный способ построения сечений многогранников. Примеры решения задач по теме исследования.

    презентация, добавлен 19.01.2014

  • Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.

    презентация, добавлен 21.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.