Группы, кольца, поля
История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.
Подобные документы
- 101. Гипотеза Биля
Доказательство гипотезы Биля методами элементарной алгебры: сочетание методов решения параметрических уравнений и замены переменных (теорема Ферма). Ее формулировка в виде неопределенного уравнения, которое не имеет решения в целых положительных числах.
творческая работа, добавлен 29.05.2009 Содержание понятия, исследование свойств и применение различных методов решения функциональных уравнений. Порядок решения функциональных уравнений Коши на множестве Q рациональных чисел, на оси R, полуоси R. Измеримые функции и гиперболические косинусы.
дипломная работа, добавлен 01.10.2011- 103. Линейная алгебра
Ознакомление с основами метода Гаусса при решении систем линейных уравнений. Определение понятия ранга матрицы. Исследование систем линейных уравнений; особенности однородных систем. Рассмотрение примера решения данной задачи в матрической форме.
презентация, добавлен 14.11.2014 - 104. Бипримарные группы
Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа, добавлен 22.09.2009 История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.
контрольная работа, добавлен 27.11.2010Знакомство с уравнениями и их параметрами. Решение уравнений первой степени с одним неизвестным, определение множества допустимых значений неизвестного. Понятие модуля числа, решение линейных уравнений с модулем и квадратных уравнений с параметром.
контрольная работа, добавлен 09.03.2011Обоснование итерационных методов решения уравнений в свертках, уравнений Винера-Хопфа, с парными ядрами, сингулярных интегральных, интегральных с одним и двумя ядрами. Рассмотрение алгоритмов решения. Анализ учебных программ по данной дисциплине.
дипломная работа, добавлен 27.06.2014Сущность итерационного метода решения задачи, оценка его главных преимуществ и недостатков. Разновидности итерационных методов решения систем линейных алгебраических уравнений: Якоби, Хорецкого и верхней релаксации, их отличия и возможности применения.
курсовая работа, добавлен 01.12.2009Суть модифицированного метода Эйлера. Определение интерполяционного многочлена. Выведение формулы трапеций из геометрических соображений. Применение для расчетов интерполированного полинома Ньютона. Составление блок-схемы алгоритма решения уравнений.
курсовая работа, добавлен 14.02.2016Расширенный алгоритм Евклида, его использование для нахождения наибольшего общего делителя натуральных чисел посредством остатков от деления. Математическая проблема календаря. Евклидовы кольца - аналоги чисел Фибоначчи в кольце многочленов, их свойства.
реферат, добавлен 25.09.2009Исследование существования примарных нормальных подгрупп в бипримарных группах. Конечные бипримарные группы, разрешимые группы порядка. Порядки силовских подгрупп общей линейной группы. Доказательство лемм и теорем с использованием бинома Ньютона.
курсовая работа, добавлен 26.09.2009Уравнения третьей степени и выше. Разложение левой части уравнения на множители, если правая часть равна нулю. Теорема Безу как один из методов, которые помогают решать уравнения высоких степеней. Определение и доказательство теоремы и следствия из нее.
научная работа, добавлен 25.02.2009Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.
учебное пособие, добавлен 29.04.2009- 114. Метод хорд
Приближенные решения кубических уравнений. Работы Диофанта, Ферма и Ньютона. Интерационный метод нахождения корня уравнения. Геометрическое и алгебраическое описания метода хорд. Погрешность приближенного решения. Линейная скорость сходимости метода.
презентация, добавлен 17.01.2011 Характеристики метода Эйлера. Параметры программы, предназначенной для решения систем линейных уравнений и ее логическая структура. Блок-схема программы и этапы ее работы. Проведение анализа результатов тестирования, исходя из графиков интераций.
курсовая работа, добавлен 27.03.2011Параллельные методы решения систем линейных уравнений с ленточными матрицами. Метод "встречной прогонки". Реализация метода циклической редукции. Применение метода Гаусса к системам с пятидиагональной матрицей. Результаты численного эксперимента.
курсовая работа, добавлен 21.10.2013Рассмотрение теории дифференциальных уравнений. Выделение классов уравнений с систем, решения которых не имеют подвижных критических особых точек. Установление достаточности найденных условий путем сравнения с классическими системами типа Пенлеве.
курсовая работа, добавлен 01.06.2015Предмет и методы изучения дифференциальной векторно-матричной алгебры, ее структура. Векторное решение однородных и неоднородных дифференциальных уравнений. Численное решение векторно-матричных уравнений. Формулы построения вычислительных процедур.
реферат, добавлен 15.08.2009- 119. Алгебра логики
Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.
реферат, добавлен 06.12.2010 Теоретические основы решения уравнений, содержащих параметр. Анализ школьных учебников по алгебре и началам анализа. Основные виды уравнений, содержащих параметр. Основные методы решения уравнений, содержащих параметр.
дипломная работа, добавлен 08.08.2007Теория групп как фундаментальное понятие и один из разделов современной математики. Основные определения и теоремы. Смежные классы: правые и левые, двойные. Нормальные подгруппы, фактор-группы. Способы их использования в решении различных задач.
курсовая работа, добавлен 30.03.2010Понятие, закономерности формирования и решения дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши. Существующие подходы и методы решения данной задачи, оценка погрешности полученных значений. Листинг программы.
курсовая работа, добавлен 27.01.2014Группы и их подгруппы. Централизаторы и нормализаторы. Разрешимые, сверхразрешимые, нильпотентные и холловы группы. Прямое, полупрямое произведения и сплетение групп. Простейшие свойства классов Фиттинга. Нормальные классы Фиттинга и их произведение.
дипломная работа, добавлен 19.04.2011История возникновения уравнений, понятие их решения и виды упрощения. Анализ способов решения ряда занимательных задач с помощью уравнений. Обращение Аль-Хорезми с уравнениями как с рычажными весами. Параметры и переменные, область определения и корень.
реферат, добавлен 01.03.2012Предпосылки развития алгебры множеств. Основы силлогистики и соотношение между множествами. Применение и типы жергонновых отношений. Понятие пустого множества и универсума. Построение диаграмм Эйлера и обоснование законов транзитивности и контрапозиции.
контрольная работа, добавлен 03.09.2010