Метод Монте-Карло и его применение

Некоторые сведения теории вероятностей. Математическое ожидание, дисперсия. Точность оценки, доверительная вероятность. Доверительный интервал. Нормальное распределение. Метод Монте-Карло. Вычисление интегралов методом Монте-Карло. Алгоритмы метода.

Подобные документы

  • Возникновение теории вероятностей как науки, вклад зарубежных ученых и Петербургской математической школы в ее развитие. Понятие статистической вероятности события, вычисление наивероятнейшего числа появлений события. Сущность локальной теоремы Лапласа.

    презентация, добавлен 19.07.2015

  • Определение вероятности брака проверяемых конструкций. Расчет вероятности того, что из ста новорожденных города N доживет до 50 лет. Расчет математического ожидания и дисперсии. Определение неизвестной постоянной С и построение графика функции р(х).

    курсовая работа, добавлен 27.10.2011

  • Понятие доверительной вероятности и доверительного интервала и его границ. Закон распределения оценки. Построение доверительного интервала, соответствующего доверительной вероятности для математического ожидания. Доверительный интервал для дисперсии.

    презентация, добавлен 01.11.2013

  • Нормальное распределение на прямой, нормальная кривая. Влияние параметров нормального распределения на форму нормальной кривой. Вероятность отклонения в заданный интервал нормальной случайной величины. Вычисление вероятности заданного отклонения.

    курсовая работа, добавлен 06.12.2012

  • Фактор как одна из случайных величин, зависимость между которыми анализируется. Дисперсия как характеристика общей изменчивости значений У. Математическое ожидание как центр группирования значений У при Х=а. Нахождение коэффициента детерминации.

    презентация, добавлен 01.11.2013

  • Закон больших чисел. Нахождение точечных оценок. Построение неизвестной дисперсии погрешности измерений. Выборочная функция распределения. Теорема Ляпунова и распределение Стьюдента. Вычисление доверительных интервалов. Построение интервальных оценок.

    курсовая работа, добавлен 18.12.2011

  • Задача на определение вероятности попадания при одном выстреле первым орудием, при условии, что для второго орудия эта вероятность равна 0,75. Интегральная формула Лапласа. Решение задачи на определение математического ожидания случайной величины.

    контрольная работа, добавлен 12.01.2010

  • Понятие непрерывной случайной величины, её значения на числовых промежутках. Определение закона распределения, его функции. Плотность распределения числовых характеристик вероятности. Математическое ожидание, дисперсия и среднеквадратичное отклонение.

    лекция, добавлен 17.08.2015

  • Пространство элементарных событий, совместные и несовместные события, поиск их вероятности. Функция распределения системы случайных величин. Числовые характеристики системы: математическое ожидание и дисперсия. Оценка закона генеральной совокупности.

    задача, добавлен 15.06.2012

  • Подборка нелепых отрывков из конспектов студентов механико-математического факультета и некоторых казусных высказываний их преподавателей. Анализ теории вероятностей и теории функции Зильберта. Методика вычисления интегралов методом подгонки под ответ.

    учебное пособие, добавлен 28.03.2010

  • Некоторые крупнейшие советские ученые, труды которых сыграли решающую роль в развитии современной теории вероятностей и её практических приложений. Свойства устойчивых распределений, а также колмогоровские аксиомы элементарной теории вероятностей.

    презентация, добавлен 15.05.2014

  • Вероятность выхода прибора за время t в нормальном режиме равна 0,1, в ненормальном 0,7. Семена некоторых растений прорастают с вероятностью 0,8. Найти вероятность того, что из 2000 посаженных семян прорастает 1600 семян; не менее 1600 семян.

    контрольная работа, добавлен 19.05.2003

  • Вычисление математического ожидания, дисперсии и коэффициента корреляции. Определение функции распределения и его плотности. Нахождение вероятности попадания в определенный интервал. Особенности построения гистограммы частот. Применение критерия Пирсона.

    задача, добавлен 17.11.2011

  • Принципы решения задач по основным разделам теории вероятностей: случайные события и их допустимость, непроизвольные величины, распределения и числовые характеристики градировки, основные предельные теоремы для сумм независимых вероятностных величин.

    контрольная работа, добавлен 03.12.2010

  • Пространство элементарных событий, математическое ожидание. Функции распределения и плотности распределения составляющих системы случайных величин. Числовые характеристики системы. Условия нормировки плотности системы случайных непрерывных величин.

    практическая работа, добавлен 15.06.2012

  • Вероятность появления события в серии из независимых испытаний. Закон распределения дискретной случайной, интегральной, дифференциальной, имперической функции распределения, математическое ожидание, дисперсия, и среднее квадратическое отклонение.

    контрольная работа, добавлен 15.11.2010

  • Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.

    контрольная работа, добавлен 31.10.2013

  • Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.

    контрольная работа, добавлен 24.01.2013

  • Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.

    контрольная работа, добавлен 15.11.2011

  • Изучение теории кратных интегралов. Исследование понятия "двойной и тройной интеграл". Применение кратных интегралов для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.

    курсовая работа, добавлен 13.12.2012

  • Общая характеристика сходимости последовательностей случайных величин и вероятностных распределений. Значение метода характеристических функций в теории вероятностей. Методика решения задач о типах сходимости. Анализ теоремы Ляпунова и Линдеберга.

    курсовая работа, добавлен 22.07.2011

  • Сущность и предмет теории вероятностей, отражающей закономерности, присущие случайным явлениям массового характера. Изучение ею закономерностей массовых однородных случайных явлений. Описание наиболее популярных в теории вероятностей экспериментов.

    презентация, добавлен 17.08.2015

  • Числовые характеристики случайной функции: математическое ожидание, дисперсия, квадрат разности, корреляционная функция. Расчет среднего выборочного и несмещенной выборочной дисперсии, проверка гипотезы о нормальном распределении по критерию согласия.

    контрольная работа, добавлен 02.06.2010

  • Среднее арифметическое наблюдаемых значений, служащее оценкой для математического ожидания. Состоятельность оценки, следующая из теоремы Чебышева. Условия возникновения систематической ошибки, ликвидация смещения. Точечные параметры оценки величин.

    презентация, добавлен 01.11.2013

  • Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.

    лекция, добавлен 17.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.