Метод Монте-Карло и его применение

Некоторые сведения теории вероятностей. Математическое ожидание, дисперсия. Точность оценки, доверительная вероятность. Доверительный интервал. Нормальное распределение. Метод Монте-Карло. Вычисление интегралов методом Монте-Карло. Алгоритмы метода.

Подобные документы

  • Математические модели явлений или процессов. Сходимость метода простой итерации. Апостериорная оценка погрешности. Метод вращений линейных систем. Контроль точности и приближенного решения в рамках прямого метода. Метод релаксации и метод Гаусса.

    курсовая работа, добавлен 13.04.2011

  • Основные понятия аксиоматической теории. Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях. Этапы развития аксиоматического метода в науке. Евклидова система обоснования геометрии.

    курсовая работа, добавлен 12.05.2009

  • Классификация методов кластеризации и их характеристика. Метод горной кластеризации в Matlab. Возможная область применения кластеризации в различных предметных областях. Математическое описание метода. Пример использования метода на реальных данных.

    реферат, добавлен 28.10.2010

  • Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.

    методичка, добавлен 02.03.2010

  • Алгебраический расчет плотности случайных величин, математических ожиданий, дисперсии и коэффициента корреляции. Распределение вероятностей одномерной случайной величины. Составление выборочных уравнений прямой регрессии, основанное на исходных данных.

    задача, добавлен 31.01.2011

  • События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.

    контрольная работа, добавлен 30.01.2015

  • Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.

    лекция, добавлен 12.12.2011

  • Основные понятия комбинаторики. Определение теории вероятности. Понятие математического ожидания и дисперсии. Основные элементы математической статистики. Условная вероятность как вероятность одного события при условии, что другое событие уже произошло.

    реферат, добавлен 25.11.2013

  • Математическое ожидание и дисперсия случайного процесса. Спектральная плотность случайного процесса. Сглаживание значений на концах случайного временного ряда. График оценки спектральной плотности для окна Рисса, при центрированном случайном процессе.

    курсовая работа, добавлен 17.09.2009

  • Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.

    курсовая работа, добавлен 19.05.2011

  • Особенности решения алгебраических, нелинейных, трансцендентных уравнений. Метод половинного деления (дихотомия). Метод касательных (Ньютона), метод секущих. Численные методы вычисления определённых интегралов. Решение различными методами прямоугольников.

    курсовая работа, добавлен 15.02.2010

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка, добавлен 24.12.2010

  • Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.

    контрольная работа, добавлен 26.12.2012

  • Построение линейной множественной регрессии для моделирования потребления продукта в разных географических районах. Расчет оценки дисперсии случайной составляющей. Вычисление и корректировка коэффициентов детерминации. Расчет доверительного интервала.

    контрольная работа, добавлен 19.12.2013

  • Обработка случайных выборок с нормальным законом распределения. Оценка коэффициентов регрессии и доверительных интервалов. Оценка значимости факторов по доверительным интервалам и корреляционного момента. Построение эмпирической интегральной функции.

    курсовая работа, добавлен 03.05.2011

  • Возникновение и развитие теории вероятностей и ее приложений. Решение классических парадоксов игры в кости и "азартных игр". Парадокс закона больших чисел Бернулли и Бертрана, дня рождения и раздачи подарков. Изучение парадоксов из книги Г. Секея.

    контрольная работа, добавлен 29.05.2016

  • Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.

    курсовая работа, добавлен 16.05.2010

  • Функция распределения непрерывной случайной величины. Математическое ожидание непрерывной случайной величины, плотность распределения вероятностей системы. Ковариация. Коэффициент корреляции.

    лабораторная работа, добавлен 19.08.2002

  • Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.

    лабораторная работа, добавлен 26.04.2014

  • Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат, добавлен 19.08.2015

  • Понятие математического моделирования: выбор чисел случайным образом и их применение. Критерий частот, серий, интервалов, разбиений, перестановок, монотонности, конфликтов. Метод середины квадратов. Линейный конгруэнтный метод. Проверка случайных чисел.

    контрольная работа, добавлен 16.02.2015

  • Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.

    реферат, добавлен 19.08.2015

  • График функции распределения. Определение математического ожидания, дисперсии и среднеквадратичного отклонения случайной величины. Вынесение константы за знак интеграла и переход от несобственного интеграла к определенному, стоящему под знаком предела.

    презентация, добавлен 01.11.2013

  • Понятия теории графов, их связность и задача о кратчайшей цепи. Программная реализация метода Дейкстры, его сравнение с методом простого перебора. Описание логики программного модуля. Примеры работы программы нахождения кратчайшей цепи в связном графе.

    курсовая работа, добавлен 25.11.2011

  • Возникновение теории вероятностей как науки. Ранние годы Андрея Николаевича Колмогорова. Первые публикации Колмогорова. Круг жизненных интересов Андрея Николаевича. Присуждение академику Андрею Николаевичу Колмогорову, в марте 1963 года, премии Бальцана.

    реферат, добавлен 15.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.