Леонард Эйлер: великий математик и не только
Биография Л. Эйлера - выдающегося математика, внесшего значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Полжизни провёл он в России, где внёс существенный вклад в становление отечественной науки.
Подобные документы
Доказательство гипотезы Гольдбаха-Эйлера. Гипотезы о том, что любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел и любое нечетное число М, большее семи, представимо в виде суммы трех нечетных простых чисел.
задача, добавлен 07.06.2009Краткие биографические сведения членов семьи Бернулли, их вклад в развитие математической науки. Известные математические объекты, названные в честь членов семьи: дифференциальное уравнение, закон, лемниската, неравенство, распределение, многочлен.
курсовая работа, добавлен 24.10.2009Задачі обчислювальної математики. Алгоритми розв'язування багатьох стандартних задач обчислювальної математики. Обчислення інтерполяційного полінома Лагранжа для заданої функції. Виконання обчислення першої похідної на основі другої формули Ньютона.
контрольная работа, добавлен 27.03.2012Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.
курсовая работа, добавлен 24.05.2009Теоретический курс математики и подробные указания его применения. Информация и задания по основным темам, рассчитанные на изучение математики в 10-11 классах на повышенном уровне, подготовка к различным видам тестирования и другим конкурсным испытаниям.
учебное пособие, добавлен 08.01.2012Современные качественные исследования устойчивости. Условия потенциальности Гельмгольца для ДУЧП с отклоняющимися аргументами. Вариационные принципы для непотенциальных операторов. Итоги науки и техники. Современные проблемы математики.
реферат, добавлен 19.10.2005Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.
презентация, добавлен 27.10.2013Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.
контрольная работа, добавлен 08.06.2010Кватернион как один из самых интересных и приметных представителей гиперкомплексных чисел, его отражение в современных информационных компьютерных интерактивно-игровых технологиях. Алгебра кватернионов над полем R. Сущность и применение тождества Эйлера.
статья, добавлен 08.12.2009Математика как наука о числах, скалярных величинах и простых геометрических фигурах. Математические модели, отражающие объективные свойства и связи. Основные понятия математики, ее язык. Аксиоматический метод, математические структуры, функции и графики.
реферат, добавлен 26.07.2010Историческая справка о возникновении и развитии математики как научной дисциплины. Разработка учебного тематического и календарного планов преподавания предмета "Высшая математика". Этапы составление плана-конспекта занятия на тему "Производная".
курсовая работа, добавлен 25.09.2010Математика как чрезвычайно мощный и гибкий инструмент при изучении окружающего мира. Роль математики в промышленной сфере, строительстве, медицине и жизни человека. Место математического моделирования в создании разнообразных архитектурных моделей.
презентация, добавлен 31.03.2015Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.
методичка, добавлен 30.04.2012- 89. Эйлеровы графы
Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.
курсовая работа, добавлен 16.05.2016 Суть модифицированного метода Эйлера. Определение интерполяционного многочлена. Выведение формулы трапеций из геометрических соображений. Применение для расчетов интерполированного полинома Ньютона. Составление блок-схемы алгоритма решения уравнений.
курсовая работа, добавлен 14.02.2016Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.
презентация, добавлен 16.05.2012Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.
реферат, добавлен 11.03.2009- 93. Эйлеровы графы
Общее понятие теоремы Эйлера, этапы ее доказательства. Необходимые и достаточные условия существования эйлерова цикла. Сущность задачи о построении каркаса куба. Алгоритм Флери построения эйлерова цикла. Обход полуэйлерова графа с нечетной вершины.
презентация, добавлен 12.04.2014 Достижения древнегреческих математиков, живших в период между VI веком до н.э. и V веком н.э. Особенности начального периода развития математики. Роль пифагорейской школы в развитии математики: Платон, Евдокс, Зенон, Демокрит, Евклид, Архимед, Аполлоний.
контрольная работа, добавлен 17.09.2010Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.
презентация, добавлен 20.09.2015Предпосылки развития алгебры множеств. Основы силлогистики и соотношение между множествами. Применение и типы жергонновых отношений. Понятие пустого множества и универсума. Построение диаграмм Эйлера и обоснование законов транзитивности и контрапозиции.
контрольная работа, добавлен 03.09.2010Психолого-педагогічні основи навчання прийомам розумової діяльності. Аналіз стану проблеми формування розумової культури учнів у процесі навчання математики. Формування вміння порівнювати в процесі навчання математики. Рівні оволодіння знаннами.
дипломная работа, добавлен 22.05.2008Понятие сходящихся рядов с комплексными числами. Действительные и мнимые части комплексной последовательности. Сумма и разность рядов в комплексными членами. Переход при помощи Эйлера от тригонометрической формы комплексного числа к показательной.
презентация, добавлен 17.09.2013Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат, добавлен 13.01.2011Математика как всеобщая и абстрактная наука. Задача ее - описание различных процессов формально-логическим способом. Развитие интеллекта школьника, обогащение его методами отбора и анализа информации. Воспитание волевых и гражданских качеств личности.
реферат, добавлен 22.05.2009