Леонард Эйлер: великий математик и не только
Биография Л. Эйлера - выдающегося математика, внесшего значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Полжизни провёл он в России, где внёс существенный вклад в становление отечественной науки.
Подобные документы
Основные этапы развития математики в Древней Греции. Изучение чисел и геометрии в Пифагорейской школе. Вклад Зенона, Демокрита, Платона и Евдокса в становление античной науки. Великий геометр древности Евклид и содержание его главного труда "Начала".
презентация, добавлен 10.03.2013Роль Леонарда Эйлера в математическом образовании в академической образовательной системе. Основная цель и принципы обучения в гимназии. Руководство к арифметике для употребления в гимназии при Императорской академии наук. Начальные основания алгебры.
презентация, добавлен 20.09.2015Биография Николая Ивановича Лобачевского - выдающегося российского математика. Главные достижения Н.И. Лобачевского - доказательство того, что существует более чем одна "истинная" геометрия, геометрические исследования по теории параллельных линий.
презентация, добавлен 19.03.2012Биография и творческий путь Гнеденко - советского математика, специалиста по математической статистике. Выявление его вклада в развитие теории вероятностей. Описание статистических методов управления качеством. Суммирование независимых случайных величин.
курсовая работа, добавлен 10.01.2015Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.
курсовая работа, добавлен 12.09.2009Понятие математического анализа. Предшественники математического анализа - античный метод исчерпывания и метод неделимых. Л. Эйлер - входит в первую пятерку великих математиков всех времен и народов. Современная пятитомная "Математическая энциклопедия".
реферат, добавлен 04.08.2010Вклад А. Колмогорова в теорию вероятностей: публикации по проблемам дескриптивной и метрической теории функций; его глубокий интерес к философии математики. Разработка метода моментов Чебышевым. Исправление учеником Чебышева Марковым его теоремы.
презентация, добавлен 28.04.2013История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат, добавлен 09.10.2008Изучение исторического развития математики в Российской Империи в период 18-19 веков как науки о количественных отношениях и пространственных формах действительного мира. Анализ уровня математического образования и его развитие российскими учеными.
реферат, добавлен 26.01.2012Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.
реферат, добавлен 30.04.2011Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.
реферат, добавлен 06.09.2006В первой половине XIX столетия не выработалась преемственная школа русских математиков, но молодая русская математика уже в первый период своего развития дала выдающихся представителей в различных отраслях этой трудной науки.
доклад, добавлен 06.09.2006Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.
презентация, добавлен 17.05.2012Разработка простого метода для решения сложных задач вычислительной и прикладной математики. Построение гибкого сеточного аппарата для решения практических задач. Квазирешетки в прикладных задачах течения жидкости, а также применение полиномов Бернштейна.
дипломная работа, добавлен 25.06.2011Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.
презентация, добавлен 20.09.2015Известный украинский математик Михаил Филлипович Кравчук. Биография. Вхождение в научную математическую среду. Практическое применение его трудов. Преподавательская деятельность. Последние годы жизни: репрессия, причины ареста, смерть в лагере.
контрольная работа, добавлен 18.11.2007Класс функций, представимых в виде собственного либо несобственного интеграла, зависящего не только от формальной переменной, а и от параметра. Эти функции называются интегралами зависящими от параметра. К ним относятся гамма и бета функции Эйлера.
курсовая работа, добавлен 03.07.2008Математика как язык науки. Математический язык описания вечности и пространства. Математика является языком науки в целом, но каждая конкретная наука должна "разговаривать" на собственном (специфическом) диалекте этого языка.
реферат, добавлен 09.06.2006Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.
статья, добавлен 05.01.2010История развития математической науки в Европе VI-XIV вв., ее представители и достижения. Развитие математики эпохи Возрождения. Создание буквенного исчисления, деятельность Франсуа Виета. Усовершенствование вычислений в конце XVI – начале XVI вв.
презентация, добавлен 20.09.2015А.Н. Колмогоров как выдающийся отечественный математик, профессор МГУ, академик АН СССР. Детство и юность математика, период обучения, первые научные труды. Вехи его профессиональной деятельности. Круг жизненных интересов, теоремы и аксиомы Колмогорова.
реферат, добавлен 13.11.2009Гипатия – первая в истории человечества женщина-ученый. Яркие математические способности и эрудиция итальянки Марии Аньези. Вклад Софи Жермен в дифференциальную геометрию, теорию чисел и механику. Первая в мире женщина-программистка Августа Ада Кинг.
презентация, добавлен 01.02.2015Характеристика экономического и культурного развития России в середине XVIII в. Новые задачи математики, обусловленные развитием техники и естествознанием. Развитие основных понятий математического анализа. Дифференциальное и интегральное исчисление.
автореферат, добавлен 29.05.2010- 24. Круги Эйлера
Изобретение Леонардом Эйлером геометрической схемы, с помощью которой можно изобразить отношения между подмножествами. Изучение частного случая кругов Эйлера — диаграммы Эйлера—Венна, изображающей все 2^n комбинаций n свойств (конечную булеву алгебру).
презентация, добавлен 16.02.2015 Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.
презентация, добавлен 17.12.2010