Предел последовательности. Теорема Штольца
Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.
Подобные документы
Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1
статья, добавлен 07.07.2005- 77. Ряд Фибоначчи
Фибоначчи Леонардо Пизанский — первый крупный математик средневековой Европы. Ряд чисел Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Примеры ряда Фибоначчи в повседневной жизни.
доклад, добавлен 24.03.2012 Понятие функции нескольких переменных. Аргументы, частное значение и область применения функции. Рассмотрение функции двух и трех переменных. Предел функции нескольких переменных, теорема. Главная сущность непрерывности функции нескольких переменных.
реферат, добавлен 30.10.2010Попытка доказательства частного случая великой теоремы Ферма. Преобразования уравнения xn+yn=zn, позволяющие получить квадратное уравнение. Показано, что вышеназванное равенство для трех действительных разных целых положительных чисел не выполняется.
монография, добавлен 27.12.2012Матричные и векторные вычисления; коллинеарные и компланарные векторы. Определение скалярного произведения векторных величин в трехмерном пространстве. Решение системы линейных уравнений с расширенной матрицей, элементарные преобразования над строками.
контрольная работа, добавлен 30.12.2010Ознакомление с геометрической и алгебраической формулировками понятия равносоставленности и практическое применение ее свойств при доказательстве обратной теоремы Пифагора методами площадей и подобных треугольников и решении задач на разрезание.
доклад, добавлен 21.02.2010Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.
курсовая работа, добавлен 24.05.2009Определение понятия пропорции, ее крайних и средних членов и их соотношения. Примеры решения уравнений и практическое применение пропорции. Основные свойства соразмерностей и изменение положения ее членов в равенстве. Поиск неизвестного пропорции.
презентация, добавлен 15.02.2011Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.
курсовая работа, добавлен 29.04.2011Теорема Ферма: содержание, доказательство, геометрический смысл. Теорема Ролля: производная функции, отсутствие непрерывности Отсутствует и дифференцируемости. Доказательство теоремы Лагранжа, общий вид, геометрический смысл, содержание следствия.
презентация, добавлен 21.09.2013Биография немецкого математика А. Гурвица. Основные положения теоремы Ферма. Обзор систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Приложение теоремы Гурвица: теоремы Фробениуса и Лагранжа.
курсовая работа, добавлен 25.05.2010Теорема Ферма, ее формулировка и доказательство в случаях, если показатель степени n - нечетное число и если n - четное число. Теорема о единственности факторизации. Дополнительные обоснования теоремы. Состав наибольшего составного числового множителя.
статья, добавлен 28.05.2009Проблема решения уравнений в целых числах: от Диофанта до доказательства теоремы Ферма. Сущность теоремы о делимости данного числа на произведение двух взаимно простых чисел, особенности ее применения к решению неопределенных уравнений в целых числах.
курсовая работа, добавлен 10.03.2014Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
творческая работа, добавлен 17.10.2009Понятие предела функции и основные требования, предъявляемые к нему, геометрический смысл. Методика определения данной геометрической категории в заданной точке при различных условиях. Вычисление ординат графиков. Возрастание по абсолютной величине.
презентация, добавлен 21.09.2013Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.
реферат, добавлен 01.12.2010Основополагающие понятия теории графов и теории групп. Определение эквивалентности, порождаемой группой подстановок, и доказательство леммы Бернсайда о числе классов такой эквивалентности. Сущность перечня конфигурации, доказательство теоремы Пойа.
курсовая работа, добавлен 20.05.2013- 93. Теорема Пифагора
Жизненный путь Пифагора, его путешествия и загадочная смерть. Заслуги Пифагора в арифметике, геометрии, музыке и астрономии. Древняя и современная формулировки теоремы Пифагора. Тригонометрическое доказательство и некоторые применения этой теоремы.
презентация, добавлен 13.12.2011 Свойства бесконечно малых величин. Произведение бесконечно малой величины на ограниченную функцию. Предел функции f(x) при x, стремящимся к бесконечности: теорема и ее доказательство. Пример решения функции и предел отношения двух малых величин.
презентация, добавлен 21.09.2013- 95. Теорема Дирихле
Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.
курсовая работа, добавлен 12.08.2009 Элементарная теория сравнений. Диофантовы приближения. Определения и свойства сравнений. Теорема Эйлера, теорема Ферма. Китайская теорема об остатках, ее обобщение Цинь Цзюшао. Применение к решению олимпиадных задач. Применение к открытию сейфа в банке.
курсовая работа, добавлен 29.09.2015Основные законы проективной геометрии. Понятие двойного отношения, параллельности и бесконечности. Теорема Дезарга и теорема Паскаля. Пространственная интерпретация теоремы Дезарга. Стереометрия помогает планиметрии. Окружность переходит в окружность.
курсовая работа, добавлен 05.12.2013- 98. Теорема Геделя
Курт Гедель как крупнейший специалист по математической логике, краткий очерк его жизни и личностного становления, достижения в сфере профессиональной деятельности. История и основные этапы создания теоремы о неполноте, первой и второй, дискуссии вокруг н
реферат, добавлен 03.05.2011 Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.
контрольная работа, добавлен 15.01.2014Комічні вибірки з конспектів студентів механічно-математичного факультету. Особливості доведення теорем Зільберта-Штольца та Штрассермана. Принцип локалізації в’язів до (n-8) порядку включно. Аналіз та характеристика N-кутників у просторі Зільберта.
учебное пособие, добавлен 28.03.2010