Пирамида

История развития понятия пирамиды как многогранника в стереометрии, её элементы, свойства и виды. Частные случаи пирамид: правильная, усечённая, прямоугольная. Теоремы, связывающие пирамиду с другими геометрическими телами и формулы, связанные с ней.

Подобные документы

  • Определение уравнения линии, уравнения и длины высоты, площади треугольника. Расчёт длины ребра, уравнения плоскости и объема пирамиды. Уравнение линии в прямоугольной декартовой системе координат. Тригонометрическая форма записи комплексных чисел.

    контрольная работа, добавлен 25.03.2014

  • Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.

    методичка, добавлен 30.04.2012

  • Свойства куба, тетраэдра, октаэдра. Прямые и наклонные призмы. Учение о многоугольниках Пифагора. Деление циферблата часов. Создание колеса со спицами и астрономических сооружений. Виды и свойства пирамид. Теории построения правильных многоугольников.

    презентация, добавлен 26.04.2015

  • История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.

    презентация, добавлен 21.10.2011

  • Определение призмы как геометрической фигуры. Свойства призмы, нормальное сечение. Правильная призма – призма, в основании которой лежит правильный многоугольник, а боковые рёбра перпендикулярны основаниям. Диагональное сечение. Элементы призм и ее виды.

    презентация, добавлен 19.09.2011

  • Базовые основы системы mn параметров, варианты их значений. Теоремы циклов для треугольников и прямоугольного треугольника. Тайна теоремы Пифагора, предистория ее рождения. Итерационные формулы и их использование. Дисперсия точек ожидаемой функции.

    статья, добавлен 24.11.2011

  • Рациональность решения задач с помощью теорем Чевы и Менелая, чем их решение другими способами, например векторным. Доказательство теорем, дополнительное построение. Трудности, связанные с освоением этих теорем, оправданные применением при решении задач.

    контрольная работа, добавлен 05.05.2019

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа, добавлен 23.08.2015

  • Краткий обзор развития геометрии. Призма. Площадь поверхности призмы. Призма и пирамида. Пирамида и площадь ее поверхности. Измерение объемов. О пирамиде и ее объеме. О призме и параллелепипеде. Симметрия в пространстве.

    реферат, добавлен 08.05.2003

  • Популярность и биография великого математика, тайны теоремы Пифагора "О равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов", история теоремы. Различные способы доказательств теоремы Пифагора, области ее применения.

    презентация, добавлен 28.02.2012

  • Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.

    курсовая работа, добавлен 05.09.2009

  • Краткий биографический очерк жизненного пути Пифагора. История появления теоремы Пифагора, ее дальнейшее распространение в мире. Формулировка и доказательство теоремы с помощью различных методов. Возможности применения теоремы Пифагора к вычислениям.

    презентация, добавлен 17.11.2011

  • Элементы геометрии треугольника: изогональное и изотомическое сопряжение, замечательные точки и линии. Коники, связанные с треугольником: свойства конических сечений; коники, описанные около треугольника и вписанные в него; применение к решению задач.

    курсовая работа, добавлен 17.06.2012

  • Определение развертки многогранника, теорема о развертке А.Д. Александрова. Теорема Д. Бликера, рассматривающая два правильных многогранника - куб и додекаэдр, условие треугольности граней как технический момент, позволивший доказать свою теорему.

    реферат, добавлен 25.09.2009

  • Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.

    курсовая работа, добавлен 02.06.2013

  • Основные законы проективной геометрии. Понятие двойного отношения, параллельности и бесконечности. Теорема Дезарга и теорема Паскаля. Пространственная интерпретация теоремы Дезарга. Стереометрия помогает планиметрии. Окружность переходит в окружность.

    курсовая работа, добавлен 05.12.2013

  • Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация, добавлен 26.01.2015

  • Краткая биографическая справка из жизни Пьера Ферма. Общее понятие про правильные многоугольники. Числа математика, их история. Великая теорема Ферма, случаи доказательства. Особенности облегченной и малой теоремы. Роль математики в деятельности Уайлсома.

    контрольная работа, добавлен 14.06.2012

  • Особенности построения Александрийского маяка на острове Форос. Арки, террасы, колоны висячих садов Семирамиды. Галикарнасский мавзолей и Храм Артемиды Эфесской. Необычайные размеры и строгость очертаний египетских пирамид. Архитектура мечети Кул-Шариф.

    презентация, добавлен 23.11.2011

  • Аналитические свойства интегральных преобразований. Интеграл Коши на различных кривых. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции. Вывод формулы Коши и формулировка следствий из данной формулы.

    курсовая работа, добавлен 10.04.2011

  • Доказательство линейной независимости системы векторов пирамиды. Расчет длины ребра, угла между ребрами. Составление уравнения прямой и плоскости. Выполнение операций для матриц. Величина главного определителя. Поиск алгебраических дополнений матрицы.

    контрольная работа, добавлен 20.03.2017

  • Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.

    учебное пособие, добавлен 06.11.2011

  • Основные условия симметричности фигуры. Примеры геометрических фигур, обладающих центральной симметрией. Центральная симметрия плодов растений и некоторых цветов, живых существ. Центральная симметрия в транспорте. Анализ аксиом стереометрии и планиметрии.

    презентация, добавлен 30.10.2013

  • Основные понятия, которые касаются центральной предельной теоремы для независимых одинаково распределенных случайных величин и проверки статистических гипотез. Анализ сходимости последовательностей случайных величин и вероятностных распределений.

    курсовая работа, добавлен 13.11.2012

  • Основные этапы и принципы решения системы линейных уравнений с помощью метода Крамара, обратной матрицы. Разрешение матричного уравнения. Вычисление определителя. Расчет параметров пирамиды: длины ребра, площади грани, объема, а также уравнения грани.

    контрольная работа, добавлен 06.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.