Пирамида

История развития понятия пирамиды как многогранника в стереометрии, её элементы, свойства и виды. Частные случаи пирамид: правильная, усечённая, прямоугольная. Теоремы, связывающие пирамиду с другими геометрическими телами и формулы, связанные с ней.

Подобные документы

  • Определение и простейшие свойства измеримой функции. Дальнейшие свойства измеримых функций. Последовательности измеримых функций. Сходимость по мере. Структура измеримых функций. теоремы о приближении измеримых функций.

    курсовая работа, добавлен 28.05.2007

  • Аксиомы: точки и прямые. Отрезки и их длины. Углы и их меры. Смежные и вертикальные углы. Параллельные прямые: определение, свойства. Треугольник и его элементы, признаки равенства. Треугольник и его виды: равнобедренный, равносторонний, прямоугольный.

    презентация, добавлен 20.05.2009

  • Первые упоминания о правильных многогранниках. Классификация многогранников, их виды, свойства, теоремы о развертках выпуклых многогранников (Коши и Александрова). Создание моделей правильных многогранников с помощью разверток и методами оригами.

    курсовая работа, добавлен 18.01.2011

  • История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.

    реферат, добавлен 09.05.2009

  • Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.

    курсовая работа, добавлен 19.12.2012

  • Выведены формулы, возможно ранее неизвестные, для решений уравнения Пифагора, Формулы отличаются от общеизвестных формул древних индусов и вавилонян.

    статья, добавлен 26.06.2008

  • Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

    презентация, добавлен 05.07.2016

  • Сущность понятия "комбинаторика". Историческая справка из истории развития науки. Правило суммы и произведения, размещения и перестановки. Общий вид формулы для вычисления числа сочетаний с повторениями. Пример решения задач по теории вероятностей.

    контрольная работа, добавлен 30.01.2014

  • История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.

    реферат, добавлен 28.05.2014

  • Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.

    реферат, добавлен 19.11.2010

  • Биография Менелая Александрийского - древнегреческого астронома и математика. Формулировка и доказательство теоремы Менелая для плоского случая, при переносе центральным проектированием на сферу. Применение теоремы для решения прикладных задач.

    презентация, добавлен 17.11.2013

  • Условия неограниченного приближения закона распределения суммы n независимых величин к нормальному закону распределения. Сущность центральной предельной теоремы. Определение с помощью теоремы Муавра-Лапласа вероятности наступления события в серии опытов.

    презентация, добавлен 01.11.2013

  • Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.

    презентация, добавлен 18.12.2012

  • История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.

    контрольная работа, добавлен 20.12.2009

  • Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.

    задача, добавлен 12.02.2011

  • Этапы возникновения, развития и основы теории исследования величины нильпотентной длины конечных разрешимых групп с известными добавлениями к максимальным подгруппам. Признаки разрешимости конечной группы, подгруппа Фиттинга, ее свойства и теоремы.

    дипломная работа, добавлен 18.09.2009

  • Геометрическая и алгебраическая формулировка теоремы Пифагора. Многочисленность ее доказательств: через подобные треугольники, методом площадей, через равнодополняемость, при помощи дифференциальных уравнений. Доказательства Евклида и Леонардо да Винчи.

    презентация, добавлен 15.10.2013

  • Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1

    статья, добавлен 07.07.2005

  • Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.

    реферат, добавлен 01.12.2010

  • Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.

    контрольная работа, добавлен 02.02.2014

  • Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.

    реферат, добавлен 13.06.2011

  • Понятие тригонометрии, ее сущность и особенности, история возникновения и развития. Структура тригонометрии, ее элементы и характеристика. Создание и развитие аналитической теории тригонометрических функций, роль в нем академика Леонарда Эйлера.

    творческая работа, добавлен 15.02.2009

  • Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.

    презентация, добавлен 05.12.2010

  • Общая характеристика сходимости последовательностей случайных величин и вероятностных распределений. Значение метода характеристических функций в теории вероятностей. Методика решения задач о типах сходимости. Анализ теоремы Ляпунова и Линдеберга.

    курсовая работа, добавлен 22.07.2011

  • Сущность понятия "скалярное произведение векторов". Законы векторного произведения. Практический пример нахождения площади треугольника. Общее понятие о правой и левой тройке. Содержание закона круговой переместительности. Объём треугольной пирамиды.

    презентация, добавлен 16.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.