Использование нейронных сетей при прогнозировании исхода выборов президента России

Решение с помощью нейросимулятора проблемы прогнозирования исхода выборов президента России. Преимущества нейросетевого подхода. Используемый персептрон. Параметры, которые могли бы помешать Медведеву выиграть на президентских выборах в 2008 году.

Подобные документы

  • Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.

    презентация, добавлен 25.06.2013

  • Преимущества нейронных сетей. Модели нейронов, представляющих собой единицу обработки информации в нейронной сети. Ее представление с помощью направленных графов. Понятие обратной связи (feedback). Основная задача и значение искусственного интеллекта.

    реферат, добавлен 24.05.2015

  • Проект автоматизированной системы прогнозирования относительного курса валютных пар для международной валютной биржи Forex с использованием нейронных сетей. Требования к техническому обеспечению. Обоснование выбора средств автоматизации программы.

    курсовая работа, добавлен 05.01.2013

  • Обзор программных продуктов для анализа изображений: ABBYY FineReader и OCR CuneiForm. Понятие и виды нейронных сетей. Алгоритм обучения персептрона. Результаты исследований и описание интерфейса программы. Расчет себестоимости программного обеспечения.

    дипломная работа, добавлен 17.08.2011

  • Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.

    дипломная работа, добавлен 29.09.2014

  • Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.

    реферат, добавлен 18.01.2014

  • Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.

    дипломная работа, добавлен 18.02.2017

  • Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.

    дипломная работа, добавлен 06.04.2014

  • Разработка системы оценки кредитоспособности заемщика с использованием персептрона. Сущность скоринговых систем, нейронных сетей. Скоринговые системы как средство минимизации кредитного риска. Этапы проектирования сети. Определение значимости параметров.

    презентация, добавлен 19.08.2013

  • Модели нейронных сетей и их реализации. Последовательный и параллельный методы резолюции как средства логического вывода. Зависимость между логическим следованием и логическим выводом. Применение технологии CUDA и реализация параллельного алгоритма.

    дипломная работа, добавлен 22.09.2016

  • Применение нейрокомпьютеров на российском финансовом рынке. Прогнозирование временных рядов на основе нейросетевых методов обработки. Определение курсов облигаций и акций предприятий. Применение нейронных сетей к задачам анализа биржевой деятельности.

    курсовая работа, добавлен 28.05.2009

  • Использование компьютерных сетей в финансово-экономической деятельности. Преимущества локальных сетей. Возможности Іnternet, основные пути использования. Решение организационно-экономических задач. Ввод формул, расчет безубыточного объема продаж.

    курсовая работа, добавлен 19.03.2009

  • Возможности программ моделирования нейронных сетей. Виды нейросетей: персептроны, сети Кохонена, сети радиальных базисных функций. Генетический алгоритм, его применение для оптимизации нейросетей. Система моделирования нейронных сетей Trajan 2.0.

    дипломная работа, добавлен 13.10.2015

  • Вычисления по формулам с циклическими ссылками (на примере нахождения корня уравнения методом Ньютона). Использование команды "Подбор параметра". Задачи, которые можно решать с помощью сервиса "Поиск решения" и способы сохранения параметров поиска.

    учебное пособие, добавлен 06.02.2009

  • Изучение методов разработки систем управления на основе аппарата нечеткой логики и нейронных сетей. Емкость с двумя клапанами с целью установки заданного уровня жидкости и построение нескольких типов регуляторов. Проведение сравнительного анализа.

    курсовая работа, добавлен 14.03.2009

  • Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.

    лабораторная работа, добавлен 05.10.2010

  • Понятие сетей Петри, их применение и возможности. Сетевое планирование, математические модели с использованием сетей Петри. Применение сетевых моделей для описания параллельных процессов. Моделирование процесса обучения с помощью вложенных сетей Петри.

    курсовая работа, добавлен 17.11.2009

  • Прогнозирование транспортных происшествий с помощью нейросети, оценка эффективности её использования. Параметры, соотношение между теоретическими, модельными значениями. Результаты нейросетевого моделирования возможности попасть в дорожное происшествие.

    презентация, добавлен 14.08.2013

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа, добавлен 08.02.2017

  • Основные параметры, которые отвечают за разгонный потенциал, производитель и модель чипов, тайминги, напряжения, качество РСВ, содержимое микросхемы SPD, используемый контроллер памяти, охлаждение. Соотношение времени доступа и штатной тактовой частоты.

    статья, добавлен 03.04.2010

  • Достоинства, недостатки и применение нейронных сетей. Преимущества мозга, как вычислительного устройства, над современными вычислительными машинами. Структурные части, виды и активационные функции нейрона. Обобщенное представление искусственного нейрона.

    презентация, добавлен 03.01.2014

  • Использование компьютерных сетей для передачи данных. Основные преимущества использования корпоративных сетей, защищенных от доступа извне физически или при помощи аппаратно программных средств сетевой защиты. Сетевой экран и алгоритмы шифрования.

    дипломная работа, добавлен 25.09.2014

  • Нейрокомпьютеры и их применение в современном обществе. Некоторые характеризующие нейрокомпьютеры свойства. Задачи, решаемые с помощью нейрокомпьютеров. Типы искусственных нейронов. Классификация искусственных нейронных сетей, их достоинства и недостатки.

    курсовая работа, добавлен 17.06.2014

  • Использование офисного пакета Microsoft Project для управления проектами. Связь задач с помощью зависимостей, определяющих порядок выполнения задач относительно друг друга. Разбиение проекта на фазы. Представление плана работ с помощью диаграммы Ганта.

    контрольная работа, добавлен 22.03.2012

  • Пример дерева решений. Анализ древовидной структуры данных. Предикторные (зависимые) переменные как признаки, описывающие свойства анализируемых объектов. Решение задач классификации и численного прогнозирования с помощью деревьев классификации.

    презентация, добавлен 09.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.