Классы Фиттинга конечных групп

Группы и их подгруппы. Централизаторы и нормализаторы. Разрешимые, сверхразрешимые, нильпотентные и холловы группы. Прямое, полупрямое произведения и сплетение групп. Простейшие свойства классов Фиттинга. Нормальные классы Фиттинга и их произведение.

Подобные документы

  • Примеры алгебраических групп матриц, классические матричные группы: общая, специальная, симплектическая и ортогональная. Компоненты алгебраической группы. Ранг матрицы, возвращение к уравнениям, совместимость. Линейные отображения, действия с матрицами.

    курсовая работа, добавлен 22.09.2009

  • Описание ненильпотентных групп с перестановочными обобщенно максимальными подгруппами. Изучение групп с Х-перестановочными I-максимальными подгруппами. Особенности групп, в которых 2-максимальные подгруппы перестановочны с 3-максимальными подгруппами.

    курсовая работа, добавлен 02.03.2010

  • Вивчення властивостей підгрупи Фиттинга. Умова існування доповнень до окремих підгруп. Визначення нильпотентної довжини розв'язної групи. Доведення ізоморфності кінцевої нерозв'язної групи з нильпотентними додаваннями до непонадрозв'язних підгруп.

    дипломная работа, добавлен 17.01.2011

  • Проблема получения описания строения w-насыщенных формаций конечных групп, имеющих заданную решетку подформаций. Некоторые сведения и варианты решения проблемы описания w-насыщенных формаций Hw-дефекта, не превосходящего 2, для произвольной формации.

    курсовая работа, добавлен 21.12.2009

  • Бинарная алгебраическая операция. Разновидности групп, использование рациональных чисел вместо вещественных. Действие группы на множестве. Группа симметрий тетраэдра. Формулировка и доказательство леммы Бернсайда о количестве орбит. Задачи о раскрасках.

    курсовая работа, добавлен 25.02.2015

  • Основные определения конечного автомата Мили, его специальные классы. Группы и полугруппы, определенные обратимым автоматом без ветвлений. Преобразования, определенные обратимым медленным автоматом конечного типа. Функции перехода без предельного цикла.

    дипломная работа, добавлен 10.06.2011

  • Классы групп с заданными решетками подгрупповых функторов. Бинарная алгебраическая операция. Группа с коммутативной операцией. Основная теорема о гомоморфизме. Определения и основные примеры подгрупповых функторов. Решетки подгрупповых функторов.

    дипломная работа, добавлен 02.02.2010

  • Возникновение науки исследования операций и особенности применения операционных методов. Отделение формы задачи от ее содержания с помощью процесса абстракции. Классы задач. Некоторые математические методы, используемые для получения решений на моделях.

    реферат, добавлен 27.06.2011

  • Виды преобразования симметрии фигур. Понятие оси и плоскости симметрии. Одновременное применение преобразований поворота и отражения, зеркально-поворотная ось. Сопряженные элементы, подгруппы и общие свойства и классификация групп операций симметрии.

    реферат, добавлен 25.06.2009

  • Основные определения и свойства скалярного произведения. Необходимое и достаточное условие перпендикулярности векторов. Проекция произвольного вектора. Геометрический смысл скалярного произведения. Проведение нормализации вектора, его направление.

    курсовая работа, добавлен 13.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.