Эйлеровы графы

Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.

Подобные документы

  • Роль математики в современном мире. Основные этапы развития математики. Аксиоматический метод построения научной теории. Начала Евклида как образец аксиоматического построения научной теории. История создания неевклидовой геометрии. Стили мышления.

    реферат, добавлен 08.02.2009

  • Алгебра логики, булева алгебра. Алгебра Жегалкина, педикаты и логические операции над ними. Термины и понятия формальных теорий, теорема о дедукции, автоматическое доказательство теорем. Элементы теории алгоритмов, алгоритмически неразрешимые задачи.

    курс лекций, добавлен 29.11.2009

  • Определение случайного процесса и его характеристики. Основные понятия теории массового обслуживания. Понятие марковского случайного процесса. Потоки событий. Уравнения Колмогорова. Предельные вероятности состояний. Процессы гибели и размножения.

    реферат, добавлен 08.01.2013

  • Применение граф-схем - кратчайший путь доказательства теорем. Нахождение искомых величин путем рассуждений. Алгоритм решения логических задач методами таблицы и блок-схемы. История появления теории траекторий (математического бильярда), ее преимущества.

    реферат, добавлен 21.01.2011

  • Сущность понятия "комбинаторика". Историческая справка из истории развития науки. Правило суммы и произведения, размещения и перестановки. Общий вид формулы для вычисления числа сочетаний с повторениями. Пример решения задач по теории вероятностей.

    контрольная работа, добавлен 30.01.2014

  • Возникновение теории вероятностей как науки, вклад зарубежных ученых и Петербургской математической школы в ее развитие. Понятие статистической вероятности события, вычисление наивероятнейшего числа появлений события. Сущность локальной теоремы Лапласа.

    презентация, добавлен 19.07.2015

  • Основные методы формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов теории вероятности. Основные понятия и аксиомы теории вероятности. Базовые понятия математической статистики.

    курс лекций, добавлен 08.04.2011

  • Основные понятия аксиоматической теории. Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях. Этапы развития аксиоматического метода в науке. Евклидова система обоснования геометрии.

    курсовая работа, добавлен 12.05.2009

  • Нечеткая логика как раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечеткого множества. Основные правила и законы данной логики, алгоритм Мамдани. Содержание и принципы решения задачи о парковке.

    курсовая работа, добавлен 22.04.2014

  • Понятия целой и дробной частей действительного числа. Основные свойства функции и ее график. Применение свойств функции y = [x] при решении уравнений и геометрических задач. Описание реальных процессов непрерывными функциями. Решение задач на делимость.

    курсовая работа, добавлен 29.05.2016

  • Программа курса, основные понятия и формулы теории вероятностей, их обоснование и значение. Место и роль математической статистики в дисциплине. Примеры и разъяснения по решению самых распространенных задач по различным темам данных учебных дисциплин.

    методичка, добавлен 15.01.2010

  • Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.

    реферат, добавлен 12.03.2004

  • Появление понятия функций Ляпунова. Развитие теории устойчивости движения. Применение функций Ляпунова к исследованию продолжимости решений дифференциальных уравнений. Методы построения функций Ляпунова, продолжимость решений уравнений третьего порядка.

    дипломная работа, добавлен 29.01.2010

  • Ознакомление с теоремами теории аналитических функций. Определение и основные свойства индекса функции. Постановка и методы решения однородной и неоднородной задач Римана для односвязной и многосвязной областей. Принципы нахождения функции сдвига.

    курсовая работа, добавлен 20.12.2011

  • История развития теории пределов. Сущность и виды числовой последовательности, методика вычисления и определение свойств ее предела. Доказательство теоремы Штольца. Практическое применение предела последовательности в экономике, геометрии и физике.

    курсовая работа, добавлен 16.12.2013

  • Начала математической теории. Арифметика узлов, их классификация. Свойства неальтернированных узлов; преобразование Рейдемейстера. Арифметические операции с математическими узлами. Разложение составного узла. Алгоритм полного перебора с заполнением.

    презентация, добавлен 13.04.2016

  • Знакомство с Пьером де Ферма - французским математиком, одним из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Разработка способов систематического нахождения всех делителей числа. Великая теорема Ферма.

    презентация, добавлен 16.12.2011

  • Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка, добавлен 24.12.2010

  • Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.

    дипломная работа, добавлен 10.12.2008

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа, добавлен 15.06.2011

  • Ознакомление с содержанием и этапами реализации программы ТРИЗ как способа развития диалектического мышления и творческого воображения. Сравнительный анализ технологий теории решения изобретательных задач в исполнении Г.С. Альтшуллера и Р. Бартини.

    контрольная работа, добавлен 10.07.2010

  • Применение функции Лагранжа в выпуклом и линейном программировании. Простейшая задача Больца и классического вариационного исчисления. Использование уравнения Эйлера-Лагранжа для решения изопериметрической задачи. Краевые условия для нахождения констант.

    курсовая работа, добавлен 16.01.2013

  • Наличие некоторого динамического объекта, т.е. объекта, меняющегося во времени, характерного для задачи управления. Линейная задача быстродействия. Свойства экспоненциала матрицы. Линейные дифференциальные уравнения с управлением, пример интегрирования.

    контрольная работа, добавлен 13.03.2015

  • Управляемые линейные динамические объекты (ЛДО). Оптимальное управление ЛДО с фиксированным временем и терминальным критерием качества. Задача линейного предельного быстродействия. Линейная задача теории оптимального управления как проблема моментов.

    учебное пособие, добавлен 05.07.2010

  • Практическое применение теории вероятностей. Методы решения задач, в которых один и тот же опыт повторяется неоднократно. Формула Бернулли для описания вероятности наступления события. Биномиальное распределение и формулировка теоремы о повторении опытов.

    презентация, добавлен 01.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.