Эйлеровы графы
Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.
Подобные документы
Понятие теории игр как раздела математики, предмет которого - анализ принятия оптимальных решений в условиях конфликта. Общие понятия в теории игр. Коалиция интересов, кооперативная или коалиционная игра. Свойства стратегических эквивалентных игр.
реферат, добавлен 06.05.2010- 102. Метод Гомори
Задача целочисленного линейного программирования, приведение к канонической форме. Общие идеи методов отсечения. Алгоритм Гомори для решения целочисленных задач линейного программирования. Понятие правильного отсечения и простейший способ его построения.
курсовая работа, добавлен 25.11.2011 Задачи о пифагоровых треугольниках с целочисленными значениями сторон. Практическое использование задач в геодезии, в атомных и молекулярных структурах и в астрономических расчетах. Число вариантов представления исходного числа в виде двух сомножителей.
статья, добавлен 26.08.2013Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.
курсовая работа, добавлен 18.06.2011- 105. Законы больших чисел
Теорема Бернулли как простейшая форма закона больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Качественные и количественные утверждения закона больших чисел, его практическое применение.
курсовая работа, добавлен 17.12.2009 Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.
презентация, добавлен 09.10.2011- 107. Иррациональное число
Первое доказательство существования иррациональных чисел. Развитие теории пропорций Евдоксом Книдским. Теоремы, корень из 2 - иррациональное число. Трансцендентное число: сущность понятия, свойства, примеры, история. История уточнения числа пи.
контрольная работа, добавлен 27.11.2011 Понятие матрицы достижимости и связности. Операция удаления вершины из графа. Алгоритм выделения компонент сильной связности. Разработка и листинг программы на языке Turbo Pascal, осуществляющей вычисление матрицы достижимости по заданному алгоритму.
курсовая работа, добавлен 26.04.2011Краткое историческое описание становления теории множеств. Теоремы теории множеств и их применение к выявлению структуры различных числовых множеств. Определение основных понятий, таких как мощность, счетные, замкнутые множества, континуальное множество.
дипломная работа, добавлен 30.03.2011Исследования Дж. Кардано и Н. Тарталья в области решения первичных задач теории вероятностей. Вклад Паскаля и Ферма в развитие теории вероятностей. Работа Х. Гюйгенса. Первые исследования по демографии. Формирование понятия геометрической вероятности.
курсовая работа, добавлен 24.11.2010Определение вероятности, что машина с неисправной ходовой частью имеет также неисправный мотор. Методика вычисления дисперсии. Проверка статистических гипотез и дисперсионный анализ. Формирование контрольных карт, их содержание и принципы построения.
курсовая работа, добавлен 31.01.2015Понятие и специфика Аддитивной теории чисел, ее содержание и значение. Описание основных проблем Аддитивной теории чисел: Варинга, Гольдбаха, Титчмарша. Методы решения данных проблем: редукция к производящим функциям, исследование структуры множеств.
курсовая работа, добавлен 18.12.2010Алгоритм Миллера-Рабина и малая теорема Ферма. Псевдопростые числа, тест на простоту. Криптографический алгоритм шифрования с открытым ключом и цифровой подписью. Создание открытого и секретного ключей. Режим подписи сообщения и способы ее проверки.
реферат, добавлен 12.12.2009Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.
дипломная работа, добавлен 09.10.2011Сущность закона распределения и его практическое применение для решения статистических задач. Определение дисперсии случайной величины, математического ожидания и среднеквадратического отклонения. Особенности однофакторного дисперсионного анализа.
контрольная работа, добавлен 07.12.2013Принципы решения задач по основным разделам теории вероятностей: случайные события и их допустимость, непроизвольные величины, распределения и числовые характеристики градировки, основные предельные теоремы для сумм независимых вероятностных величин.
контрольная работа, добавлен 03.12.2010Целочисленные задачи математического программирования. Постановка транспортной задачи по критерию стоимости в матричной форме. Задача о назначении (проблема выбора, задача о женихах и невестах). Алгоритм метода Гомори. Формирование правильного отсечения.
курсовая работа, добавлен 05.12.2012История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.
контрольная работа, добавлен 20.12.2009Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.
реферат, добавлен 20.08.2015- 120. Понятие пропорции
Определение понятия пропорции, ее крайних и средних членов и их соотношения. Примеры решения уравнений и практическое применение пропорции. Основные свойства соразмерностей и изменение положения ее членов в равенстве. Поиск неизвестного пропорции.
презентация, добавлен 15.02.2011 Линейная алгебра. Комплексные числа. Деление отрезка в данном отношении. Площадь треугольника и многоугольника. Сферические и цилиндрические поверхности. Замечательные и вычислительные пределы. Производства и дифференциал. Построение графика функций.
методичка, добавлен 19.06.2015Классическая формула для вероятности события, отношение благоприятного числа исходов опыта к общему числу всех равновозможных несовместных исходов. Понятие непрерывной и дискретной случайной величины, их числовые характеристики и законы распределения.
презентация, добавлен 19.07.2015Непрерывные отображения топологических пространств. Связность топологических пространств. Компактность топологических пространств. Связность непрерывных отображений. Замкнутые отображения. Связь связности и послойной связности.
курсовая работа, добавлен 08.08.2007Проблема решения уравнений в целых числах: от Диофанта до доказательства теоремы Ферма. Сущность теоремы о делимости данного числа на произведение двух взаимно простых чисел, особенности ее применения к решению неопределенных уравнений в целых числах.
курсовая работа, добавлен 10.03.2014Гиперкомплексные числа: общее понятие и основные свойства. Нахождение корней трансцендентного уравнения в комплексных числах на примере уравнения классической задачи теории флаттера в математическом виде. Программная реализация решения в среде Maple.
контрольная работа, добавлен 28.06.2013