Математический анализ. Практикум
Общие свойства функций. Правила дифференциального исчисления. Неопределенный и определенный интегралы, методы их вычисления. Функции нескольких переменных, производные и дифференциалы. Классические методы оптимизации. Модель потребительского выбора.
Подобные документы
Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.
контрольная работа, добавлен 01.03.2011Пределы последовательностей и функций. Производная и дифференциал. Геометрические изложения и дифференцированные исчисления (построение графиков). Неопределенный интеграл. Определенный интеграл. Функции нескольких переменных, дифференцированных исчислений
контрольная работа, добавлен 11.06.2003Пределы функции, ее полное исследование с использованием дифференциального исчисления. Вычисление неопределенных интегралов с использованием методов интегрирования. Определенный и несобственный интегралы. Числовые ряды, их исследование на сходимость.
контрольная работа, добавлен 07.04.2013Производные функций, заданных в явном и неявном виде. Исследование функций методами дифференциального исчисления. Точки перегиба и экстремума, градиент функции. Объем тела, образованного вращением фигуры и ограниченной графиками функций, вокруг оси.
контрольная работа, добавлен 11.07.2013Понятие функции нескольких переменных. Аргументы, частное значение и область применения функции. Рассмотрение функции двух и трех переменных. Предел функции нескольких переменных, теорема. Главная сущность непрерывности функции нескольких переменных.
реферат, добавлен 30.10.2010Элементы алгебры и введение в математический анализ. Дифференциальное исчисление функций одной или нескольких переменных и элементы дифференциальной геометрии. Интегральное исчисление. Числовые и функциональные ряды. Кратные и криволинейные интегралы.
дипломная работа, добавлен 09.03.2009Понятие пределов функции, нахождение ее точки экстремума, промежутков возрастания и убывания. Определенный, неопределенный и несобственный интервал. Исследование степенного ряда на сходимость на концах интервала. Решение дифференциального уравнения.
контрольная работа, добавлен 01.05.2012Методы условной и безусловной нелинейной оптимизации. Исследование функции на безусловный экстремум. Численные методы минимизации функции. Минимизация со смешанными ограничениями. Седловые точки функции Лагранжа. Использование пакетов MS Excel и Matlab.
лабораторная работа, добавлен 06.07.2009Функции нескольких переменных. Локальные экстремумы функции двух переменных. Производная по направлению. Двойные и тройные интегралы. Вычисление объемов тел и площадей плоских фигур. Тройной интеграл, криволинейные интегралы первого и второго рода.
учебное пособие, добавлен 23.04.2012Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.
контрольная работа, добавлен 02.02.2014Понятия зависимой, независимой переменных, области определения функции. Примеры нахождения области функции. Примеры функций нескольких переменных: линейная, квадратическая, функция Кобба-Дугласа. Построение графика и линии уровня функции двух переменных.
презентация, добавлен 17.09.2013Алгоритм вычисления интегральной суммы для функции нескольких переменных по кривой АВ. Определение понятия криволинейного интеграла второго рода. Представление суммы интегралов двух функций вдоль кривой АВ как криволинейного интеграла общего вида.
презентация, добавлен 17.09.2013Алгоритм вычисления интегральной суммы для функции нескольких переменных f(x, y) по плоской кривой АВ. Ознакомление с понятием криволинейного интеграла первого рода. Представление формулы расчета криволинейного интеграла по пространственной кривой.
презентация, добавлен 17.09.2013Теоремы дифференциального исчисления, как основа для правила Лопиталя и формулы Тейлора. Правило Лопиталя и методы раскрытия всех типов неопределенностей. Вывод формулы Тейлора и ее применение для нахождения эквивалентных функций и вычисления пределов.
курсовая работа, добавлен 05.09.2009Математическая задача оптимизации. Минимум функции одной и многих переменных. Унимодальные и выпуклые функции. Прямые методы безусловной оптимизации и минимизации, их практическое применение. Методы деления отрезка пополам (дихотомия) и золотого сечения.
курсовая работа, добавлен 26.08.2009Понятие двойного интеграла, условия его существования, свойства и методы вычисления: сведение двойного интеграла к повторному для прямоугольной и криволинейной областей; двойной интеграл в полярных координатах; замена переменных; вычисление объемов тел.
контрольная работа, добавлен 21.07.2013Понятие функции двух и более переменных, ее предел и непрерывность. Частные производные первого и высших порядков. Определение полного дифференциала. Необходимые и достаточные условия существования экстремума и его нахождение на условном множестве.
реферат, добавлен 03.08.2010Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.
контрольная работа, добавлен 16.08.2010Задания на установление заданных пределов без использования правила Лопиталя. Определение точек разрыва функции и построение ее графика. Правило вычисления производной, заданной неявно. Исследование функции методами дифференциального исчисления.
контрольная работа, добавлен 10.10.2011Условия возникновения и особенности вычисления функций Матье, характеристика дифференциального уравнения Матье. Алгоритм решения задачи и алгоритмы вычисления радиальных функций эллиптического цилиндра. Определение точности результатов вычисления.
научная работа, добавлен 02.05.2011Задачи, приводящие к понятию производной. Особенности определения с помощью этого основного понятия дифференциального исчисления уравнения касательной к непрерывной кривой в заданной точке, скорости, производительности труда в определенный момент времени.
презентация, добавлен 21.09.2013Основные признаки возрастания и убывания функции. Максимум и минимум функций. План решения текстовых задач на экстремум. Производные высших порядков. Формулы Тейлора и Маклорена. Применение дифференциалов при оценке погрешностей. Длина плоской кривой.
курсовая работа, добавлен 25.11.2010Методы нахождения минимума функции одной переменной и функции многих переменных. Разработка программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска. Поиск минимума функции методом золотого сечения.
курсовая работа, добавлен 12.10.2009Функция многих переменных. Предел и непрерывность функции многих переменных. Частные производные. Дифференцируемость функции. Производная в направлении. Градиент. Локальные экстремумы. Интегральное исчисление функций. Неопределённный интеграл.
курс лекций, добавлен 08.04.2008Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.
презентация, добавлен 15.01.2014