Метризуемость топологических пространств
Основные понятия и теоремы. Свойства метризуемых пространств. Примеры метризуемых и неметризуемых пространств. Метризуемое пространство хаусдорфово. Метризуемое пространство нормально. Выполняется первая аксиома счетности.
Подобные документы
Векторы в трехмерном пространстве. Линейные операции над векторами. Общее понятие про скалярные величины. Проекции векторов, их свойства. Коммутативность скалярного произведения, неравенство Коши-Буняковского. Примеры скалярного произведения векторов.
контрольная работа, добавлен 06.05.2012В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб.
задача, добавлен 07.05.2003Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.
реферат, добавлен 17.06.2014Общее понятие вектора и векторного пространства, их свойства и дополнительные структуры. Графический метод в решении задачи линейного программирования, его особенности и область применения. Примеры решения экономических задач графическим способом.
курсовая работа, добавлен 14.11.2010Основные законы проективной геометрии. Понятие двойного отношения, параллельности и бесконечности. Теорема Дезарга и теорема Паскаля. Пространственная интерпретация теоремы Дезарга. Стереометрия помогает планиметрии. Окружность переходит в окружность.
курсовая работа, добавлен 05.12.2013Первое доказательство существования иррациональных чисел. Развитие теории пропорций Евдоксом Книдским. Теоремы, корень из 2 - иррациональное число. Трансцендентное число: сущность понятия, свойства, примеры, история. История уточнения числа пи.
контрольная работа, добавлен 27.11.2011Основные понятия и определения. * - алгебры. Представления. Тензорные произведения. Задача о двух ортопроекторах. Два ортопроектора в унитарном пространстве, в сепарабельном гильбертовом пространстве. Спектр суммы двух ортопроекторов.
дипломная работа, добавлен 04.06.2002Система линейных уравнений. Векторная алгебра, линейные операции для векторов, векторное (линейное) пространство. Случайные события и величины, плотность распределения вероятности, математическое ожидание, дисперсия, среднее квадратическое отклонение.
методичка, добавлен 18.05.2010Основные понятия теории полуколец. Определение полукольца. Примеры. Дистрибутивные решетки. Идеалы полуколец. Положительные и ограниченные полукольца. Определение и примеры положительных и ограниченных полуколец. Основные свойства полуколец.
дипломная работа, добавлен 14.06.2007Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.
дипломная работа, добавлен 24.02.2010Особенности видов тетраэдров и теоремы о них, их доказательства и примеры решения задач. Сравнительная характеристика изложения темы "тетраэдр" в школьных учебниках. Тестирование уровня развития пространственного мышления у учеников средней школы.
дипломная работа, добавлен 19.06.2011Основные понятия, которые касаются центральной предельной теоремы для независимых одинаково распределенных случайных величин и проверки статистических гипотез. Анализ сходимости последовательностей случайных величин и вероятностных распределений.
курсовая работа, добавлен 13.11.2012Выпуклые многогранники и их "ежи". Понятие опорной плоскости и ее свойства. Пересечение конечного числа полупространств. Множество векторов в пространстве. Многогранники с центрально-симметричными гранями и центрально-симметричные многогранники.
презентация, добавлен 22.04.2013Понятие и характерные свойства обобщенных функций и обобщенных производных, их отличительные признаки и направления анализа. Решение и определение данных величин на основе специальных теорем. Сущность и структура, элементы пространства Соболева.
презентация, добавлен 30.10.2013- 40. Теорема Силова
Доказательство первой, второй и третей теоремы Силова. Описание групп порядка pq. Смежные классы по подгруппе и теорема Лагранжа. Классы сопряженных элементов. Нормализатор множества в группе. Теоремы о гомоморфизмах. Примеры силовских подгрупп.
курсовая работа, добавлен 21.04.2011 Аксиомы линейного векторного пространства. Произведение любого вектора на число 0. Аксиомы размерности, доказательство теоремы. Дистрибутивность скалярного произведения векторов относительно сложения векторов. Требования, предъявляемые к системе аксиом.
реферат, добавлен 28.03.2014Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.
презентация, добавлен 19.07.2015Основные понятия и результаты, связанные с теорией диофантовых уравнений, теорией эллиптических кривых и abc-гипотезой. Метод бесконечного спуска и доказательство теоремы Ферма для n=4. Анализ выводов К. Рибета Великой теоремы Ферма из гипотезы Таниямы.
дипломная работа, добавлен 26.05.2012Основные понятия алгебры логики. Дизъюнктивные и конъюнктивные нормальные формы. Сущность теоремы Шеннона. Булевы функции двух переменных. Последовательное и параллельное соединение двух выключателей. Свойства элементарных функций алгебры логики.
контрольная работа, добавлен 29.11.2010Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.
курсовая работа, добавлен 04.07.2015Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.
презентация, добавлен 01.11.2013А.Н. Колмогоров как выдающийся отечественный математик, профессор МГУ, академик АН СССР. Детство и юность математика, период обучения, первые научные труды. Вехи его профессиональной деятельности. Круг жизненных интересов, теоремы и аксиомы Колмогорова.
реферат, добавлен 13.11.2009История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.
презентация, добавлен 21.10.2011- 49. Пирамида
История развития понятия пирамиды как многогранника в стереометрии, её элементы, свойства и виды. Частные случаи пирамид: правильная, усечённая, прямоугольная. Теоремы, связывающие пирамиду с другими геометрическими телами и формулы, связанные с ней.
презентация, добавлен 15.03.2016 Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.
творческая работа, добавлен 20.05.2009