Эйлеровы графы

Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.

Подобные документы

  • Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.

    задача, добавлен 21.08.2010

  • Оптимизация управления потоком заявок в сетях массового обслуживания. Методы установления зависимостей между характером требований, числом каналов обслуживания, их производительностью и эффективностью. Теория графов; уравнение Колмогoрова, потоки событий.

    контрольная работа, добавлен 01.07.2015

  • Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.

    контрольная работа, добавлен 12.06.2011

  • Основные этапы развития булевой алгебры и применение минимальных форм булевых многочленов к решению задач, в частности, с помощью метода Куайна - Мак-Класки. Применение минимизирования логических форм при проектировании устройств цифровой электроники.

    курсовая работа, добавлен 24.05.2009

  • Элементы алгебры, логические операции над высказываниями. Получение логических следствий из данных формул и посылок для данных логических следствий. Необходимые и достаточные условия. Анализ и синтез релейно-контактных схем. Логические следствия и формы.

    дипломная работа, добавлен 11.12.2010

  • Краткая биографическая справка из жизни Пифагора. Сущность понятия "пифагоровы тройки", простые способы их формирования. Свойства троек, главные их следствия. Решение задачи на нахождение тангенса острого угла. Подсказки для выбора правильной "тройки".

    презентация, добавлен 01.12.2012

  • Изучение возникновения математики и использования математических методов Древнем Китае. Особенности задач китайцев по численному решению уравнений и геометрических задач, приводящих к уравнениям третьей степени. Выдающиеся математики Древнего Китая.

    реферат, добавлен 11.09.2010

  • Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.

    контрольная работа, добавлен 19.03.2011

  • Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.

    контрольная работа, добавлен 08.05.2009

  • Сущность и содержание теории сравнений. Основные понятия и теоремы сравнения первой степени с одной переменной. Методика сравнения по простому модулю с одним и несколькими неизвестными. Системы уравнений первой степени и основные этапы их решения.

    курсовая работа, добавлен 27.06.2010

  • Решение двойственной задачи с помощью первой основной теоремы теории двойственности, графическим и симплексным методом. Математическая модель транспортной задачи, расчет опорного плана перевозок методами северо-западного угла и минимального элемента.

    контрольная работа, добавлен 27.11.2011

  • Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.

    дипломная работа, добавлен 16.12.2008

  • Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.

    дипломная работа, добавлен 10.12.2008

  • Построение квадратичных двумерных стационарных систем с заданными интегралами. Выражение коэффициентов интегралов через коэффициенты системы, связь последних между собой тремя соотношениями. Необходимые и достаточные условия существования у системы.

    дипломная работа, добавлен 07.09.2009

  • Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.

    контрольная работа, добавлен 02.11.2011

  • Применение метода инверсии при решении задач на построение в геометрии. Решение задачи Аполлония, лемма об антипараллельных прямых. Инвариантные окружности и сохранение углов при инверсии. Недостатки применения инверсии и работа инверсора Гарта.

    дипломная работа, добавлен 30.09.2009

  • Описание общих принципов метода сеток, его применение к решению параболических уравнений. Исследование разрешимости получаемой системы разностных уравнений. Разработка программы для численного решения поставленной задачи, выполнение тестовых расчетов.

    курсовая работа, добавлен 12.10.2009

  • Биссектриса треугольника, центр вписанной окружности треугольника, точка Жергонна. Центр тяжести окружности треугольника. Решение задач на применение свойств биссектрисы. Окружность и прямая Эйлера, свойства окружности. Ортоцентр окружности треугольника.

    курсовая работа, добавлен 13.05.2015

  • Выполнение алгебраических преобразований, логическая культура и техника исследования. Основные типы задач с параметрами, нахождение количества решений в зависимости от значения параметра. Основные методы решения задач, методы построения графиков функций.

    методичка, добавлен 19.04.2010

  • Применение леммы Бернсайда к решению комбинаторных задач. Орбиты группы перестановок. Длина орбиты группы перестановок. Лемма Бернсайда. Комбинаторные задачи. "Метод просеивания". Формула включения и исключения.

    дипломная работа, добавлен 14.06.2007

  • Обобщения - метод научного познания в обучении математике. Методические особенности их использования в изучении теоретического материала. Обобщения при решении задач на уроках математики. Обобщение как эвристический прием решения нестандартных задач.

    курсовая работа, добавлен 12.01.2011

  • Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.

    курсовая работа, добавлен 22.01.2014

  • О происхождении задачи удвоения куба (одной из пяти знаменитых задач древности). Первая известная попытка решения задачи, решение Архита Тарентского. Решение задачи в Древней Греции после Архита. Решения с помощью конических сечений Менехма и Эратосфена.

    реферат, добавлен 13.04.2014

  • Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.

    курсовая работа, добавлен 17.06.2014

  • Понятие "задача" и процесс ее решения. Технология обучения приемам восприятия и осмысления, поиска и составления плана решения. Методика обучения решению задач различными методами. Сущность, смысл и обозначение дробей, практические способы их сравнения.

    методичка, добавлен 03.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.