Интегрирование функций нескольких переменных
Двойной интеграл, его свойства. Алгоритм метода интегральной суммы. Задача о вычислении объема цилиндрического бруса. Вычисление площади круга и леминискаты. Вид уравнения поверхности. Цилиндрические и сферические координаты. Пределы интегрирования.
Подобные документы
Геометрический смысл интегральной суммы. Свойства верхних и нижних сумм. Лемма Дарбу. Необходимое и достаточное условие интегрируемости. Сущность равномерно непрерывных функций. Объемы тел вращения. Правила интегрирования. Формула прямоугольников.
реферат, добавлен 17.01.2011Методы исследования предела и производной функции, построения графиков. Вычисление неопределенных интегралов, методы интегрирования. Определение области сходимости степенного ряда. Функции нескольких переменных. Решение дифференциальных уравнений.
контрольная работа, добавлен 30.03.2015Первообразная функция и неопределенный интеграл. Восстановление функции по ее производной. Определение пройденного пути по заданной скорости движения. Интеграл и задача об определении площади. Свойства неопределенного интеграла. Примеры интегрирования.
курсовая работа, добавлен 22.04.2011Пределы функции, её исследование. Неопределенный и определенный, несобственный интеграл, его практическое применение. Числовые и степенные ряды, сходимость, признак Даламбера, принцип Лейбница. Функции нескольких переменных, дифференциальные уравнения.
контрольная работа, добавлен 06.08.2015Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.
презентация, добавлен 24.09.2019Изучение основных методов интегрирования простейших иррациональных функций. Определенный интеграл и его приложения. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Вычисление площади плоской фигуры, дуги, объемов тел вращения.
методичка, добавлен 16.09.2017- 32. Метод Гаусса
Рассмотрение системы уравнений как условия, состоящего в одновременном выполнении нескольких уравнений относительно нескольких переменных. Установление обусловленности матрицы. Изучение методов интегрирования Ньютона-Котеса. Обзор метода прямоугольников.
доклад, добавлен 24.01.2016 Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.
курс лекций, добавлен 07.03.2015Первообразная функция, теорема о первообразных. Неопределенный интеграл, свойства, таблица. Замена переменной, интегрирование по частям. Интегрирование дробей, выражений, содержащих тригонометрические функции. Определенный интеграл, геометрический смысл.
реферат, добавлен 12.03.2010Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.
контрольная работа, добавлен 27.11.2013Алгоритм решения задачи интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом. Решение задач с использованием программы Matlab с представлением необходимой графической и табличной информации.
курсовая работа, добавлен 20.02.2019Вычисление площади плоской фигуры с применением определенного интеграла. Определение объема тела вращения при помощи геометрических расчетов. Понятие и признаки несобственного интеграла. Несобственные интегралы с бесконечными пределами интегрирования.
лекция, добавлен 03.04.2019Объём цилиндрического тела. Примеры вычисления двойных интегралов. Приложения двойных интегралов к задачам механики. Вычисление площадей и объёмов с помощью двойных интегралов. Вычисление площадей поверхностей с помощью двойного интегрирования.
реферат, добавлен 12.03.2010Вычисление пределов и производных логарифмических функций, применение правила дифференцирования суммы. Построение графика функции, нахождение горизонтальных и наклонных асимптот. Вычисление неопределенных интегралов и дифференциального уравнения.
контрольная работа, добавлен 19.04.2016Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Простейшие рациональные дроби и их интегрирование. Интегралы от иррациональных функций.
лекция, добавлен 25.06.2021Вычисление определенных интегралов по формуле Ньютона-Лейбница. Методы численного интегрирования. Суть метода прямоугольников. Метод средних прямоугольников. Выполнение "прямого хода" и "обратного хода". Задача Дирихле для уравнения Лапласа методом сеток.
контрольная работа, добавлен 15.06.2013Вычисление значения функции в точке. Характеристика интегральной суммы функции на отрезке. Определение нижнего и верхнего предела интегрирования. Рассмотрение методов применения формулы Ньютона-Лейбница. Установление основных способов замены переменной.
задача, добавлен 17.02.2016Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.
задача, добавлен 09.06.2014Понятие криволинейного интеграла 1-ого рода от функции как предела интегральной суммы, полученной в результате разбиения этой кривой на малые участки с длиной и постоянной плотностью, механический смысл и порядок определения. Координаты центра тяжести.
практическая работа, добавлен 18.10.2013Предназначение и применение функции нескольких переменных. Сущность и характеристика дифференцируемой функции, значение дифференциала. Определение предела функции нескольких переменных, её непрерывность. Описание и использование точки поверхности.
курсовая работа, добавлен 16.04.2015Определенные и неопределенные интегралы функций и их свойства. Метод непосредственного интегрирования. Интегрирование элементарных и рациональных дробей, биноминальных дифференциалов. Универсальная тригонометрическая подстановка. Теорема Ньютона-Лейбница.
курс лекций, добавлен 05.03.2016Задачи численного интегрирования. Вычисление производной заданной функции, интерполяционного многочлена Ньютона. Решение дифференциальных уравнений. Вычисление приближенных значений интеграла методом треугольников, методом трапеций и методом Симпсона.
контрольная работа, добавлен 23.12.2017Неопределённый интеграл как совокупность всех первообразных данной функции. Основные приемы вычисления. Интегрирование дробно-рациональных и тригонометрических функций. Независимость от вида переменной. Интегрирование, содержащий квадратный трехчлен.
презентация, добавлен 30.01.2015Расчет центра тяжести однородной фигуры, ограниченной линиями. Проверка формулы Грина для интеграла. Исследование рядов на сходимость. Изменение порядка интегрирования, вычисление интеграла. Расчет области сходимости степенного ряда с заданной точностью.
контрольная работа, добавлен 27.06.2017Вычисление тройного интеграла в цилиндрической системе координат. Основные определения тройного интеграла. Теорема и свойства, замена переменных при ее доказательстве. Тройной интеграл в цилиндрической системе координат. Изменение порядка интегрирования.
курсовая работа, добавлен 13.01.2015