К обоснованию метода устойчивого оценивания посредством неравенства Чебышева

Описание обоснование метода устойчивого оценивания, использующего процедуру обратноквадратичного взвешивания наблюдений, вытекающей из неравенства Чебышева. Устойчивость алгоритма устойчивого оценивания, использующего вычисление весов наблюдений.

Подобные документы

  • Вычисление минимума функции двух переменных, характеристика и особенности алгоритма метода Коши. Преимущества применения метода золотого сечения. Нахождение решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.

    лабораторная работа, добавлен 06.10.2022

  • Изучение способов решения квадратного неравенства: аналитического и графического. Исследование неравенств с одной переменной. Рассмотрение особенностей неравенств, содержащих знак модуля. Определение количества целочисленных решений неравенства.

    презентация, добавлен 15.03.2015

  • Линейные, квадратные, тригонометрические уравнения и неравенства с параметром и к ним сводимые, их общая характеристика и математические свойства, направления исследования. Их разновидности и признаки, основные приемы и принципы решения, результаты.

    учебное пособие, добавлен 27.09.2013

  • Получение необходимых и достаточных условий справедливости интегрально-дифференциального неравенства. Особенности использования методов исследования вариационных задач, разработанные Пермским семинаром по функционально-дифференциальным уравнениям.

    статья, добавлен 26.04.2019

  • Вычисление вероятности с помощью теоремы Пуассона, функции распределения и неравенства Маркова. Нахождение математического ожидания и дисперсии, коэффициента корреляции, среднего квадратического отклонения и функции распределения случайной величины.

    контрольная работа, добавлен 27.04.2015

  • Определение предела функции по Коши, понятие непрерывности в точке. Множества Коши в Евклидовом пространстве. Решение неравенства Коши для бесконечных последовательностей. Неравенства треугольника. Комплексные пространства со скалярным произведением.

    курсовая работа, добавлен 09.12.2010

  • Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.

    презентация, добавлен 07.05.2014

  • Методика поиска точки глобального минимума на отрезке, где функция удовлетворяет условию Липшица на этом отрезке. Описание алгоритма метода ломаных и анализ полученных результатов. Свойства соответствующего семейства. Вычисление константы Липшица.

    контрольная работа, добавлен 04.06.2015

  • Вычисление определенных интегралов с помощью квадратурных формул. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа. Общая формула Симпсона, простейшие квадратурные формулы. Квадратурная формула Чебышева.

    контрольная работа, добавлен 21.12.2010

  • Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.

    учебное пособие, добавлен 10.04.2015

  • Основы статистического метода исследования. Детерминированная теория ошибок и дисперсии искомых оценок. Применение принципа наименьших квадратов в экспериментальной науке. Выведение погрешности наблюдений из распределения среднего арифметического.

    статья, добавлен 22.02.2019

  • Определение среднего изменения результативного признака под влиянием одного или комплекса факторов. Применение метода корреляционного анализа. Соотношение дисперсий и одинакового числа наблюдений. Линейный парный коэффициент корреляции, его пределы.

    контрольная работа, добавлен 16.10.2013

  • Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.

    статья, добавлен 03.03.2018

  • Понятия дисперсного анализа. Факторы и их уровни. Однофакторный дисперсионный анализ, его виды. Особенности двухфакторного дисперсионного анализа, его модель с одинаковым числом наблюдений в ячейке. Постоянные эффекты при неравном числе наблюдений.

    учебное пособие, добавлен 08.09.2015

  • Средние величины и классические неравенства. Неравенство между средним арифметическим и средним геометрическим. Доказательство неравенств методом "от противного" и методом математической индукции. Решение уравнений с помощью замечательных неравенств.

    реферат, добавлен 19.07.2016

  • Рассмотрение метода Дайсона в общем виде. Главная особенность использования троичной системы счисления. Характеристика алгоритма решения для случая. Обоснование оптимальности метода Дайсона. Основной анализ определения фальшивой монеты и ее типа.

    презентация, добавлен 18.02.2020

  • Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.

    учебное пособие, добавлен 28.12.2013

  • Анализ двухступенчатой процедуры выполнения наблюдений при неизвестном значении параметра, определяющего закон распределения результатов наблюдений, и принятия решений на их основе. Доказательство теоремы о асимптотической оптимальности процедуры.

    статья, добавлен 18.02.2016

  • Построение на плоскости области решений линейных неравенств и геометрическое решение максимального и минимального значения целевой функции в этой области. С помощью симплекс-метода определение максимума целевой функции при данной системе ограничений.

    контрольная работа, добавлен 27.03.2015

  • Описание метода Гаусса. Рассмотрение алгоритма на примере системы уравнений. Необходимое и достаточное условие применимости метода. Анализ прямого и обратного хода, построение схемы единственного деления. Контроль и точность вычислений в уравнениях.

    реферат, добавлен 31.05.2009

  • Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.

    статья, добавлен 30.10.2016

  • Формулирование и доказывание теоремы общего характера об использовании метода гомотопий для произвольных конечномерных полей. Рассмотрение преимуществ использования метода гомотопий. Вычисление индекса изолированной особой точки векторного поля.

    статья, добавлен 26.04.2019

  • Постановка задачи и построение ее математической модели. Запись переменных, целевой функции, неявного ограничения. Выбор, обоснование и описание метода решений поставленной задачи. Описание симплекс-метода. Проведение анализа модели на чувствительность.

    контрольная работа, добавлен 29.01.2014

  • Обоснование философского взгляда на процессы жизни и сознания, использующего популяционную динамику в качестве главного механизма развития биологических, психических, социальных, и прочих систем. Математический анализ динамики популяционных объектов.

    статья, добавлен 07.03.2019

  • Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.

    курсовая работа, добавлен 13.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.