Понятия числа в математике

Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.

Подобные документы

  • Роль простых чисел в криптографии. Арифметические прогрессии. Комбинации арифметических прогрессий. Система формул арифметических прогрессий. Матрицы чисел. Разности и суммы прогрессий. Члены прогрессий. Таблицы. Бесконечное множество комбинаций.

    доклад, добавлен 25.10.2008

  • Доказательство подлинности вспомогательной теоремы Ферма. Делимость чисел на основе сравнения по ненулевому рациональному модулю. Теорема Ферма для всех простых нечётных показателей переменных. Доказательство бесконечности регулярных простых чисел.

    статья, добавлен 03.03.2018

  • История появления проблем простых чисел. Асиптотический Закон рапределения простых чисел в натуральном ряду. Роль простых чисел в математике. "Тернарная" проблема Гольдбаха. Список проблем для Теории чисел, аналогичный списку Гильберта, его описание.

    статья, добавлен 24.08.2020

  • Запись чисел в римской системе счисления, её недостатки. Сущность и предназначение десятичной системы счисления, использование индийской нумерации. Характеристика работы вычислительных машин. Соответствие чисел, записанных в различных системах счисления.

    реферат, добавлен 22.11.2015

  • Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.

    учебное пособие, добавлен 04.02.2012

  • На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.

    статья, добавлен 11.07.2018

  • Рассмотрение множества действительных чисел. Свойства пределов, связанные с арифметическими операциями. Изображение действительных чисел бесконечными десятичными дробями. Пределы последовательности и граница функции, их показатели и точки разрывов.

    курс лекций, добавлен 13.01.2014

  • Перевод чисел из одних систем счисления в другие. Виды систем счисления. Особенности позиционных и непозиционных (римских) систем счисления. Основание системы счисления. Перевод чисел с помощью персонального компьютера, занесение результата в таблицу.

    практическая работа, добавлен 18.12.2015

  • Характеристика совершенных чисел как натуральных чисел, равных сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самих чисел). Изучение основных свойств и операций с совершенными числами, анализ их истории.

    презентация, добавлен 20.10.2016

  • Формула составных чисел в ряду натуральных чисел. Изучение поведения параметра К. Получение системы арифметических прогрессий. Пример для студенствующих математиков. Рассмотрение подмножества чётных чисел. Некоторые свойства арифметических прогрессий.

    научная работа, добавлен 30.03.2017

  • Система счисления как символический метод представления чисел с помощью письменных знаков, отражающий алгебраическую и арифметическую структуру чисел. Позиционные и непозиционные системы счисления. Позиционное число как сумма степеней основания системы.

    презентация, добавлен 22.01.2013

  • Концепция иррациональных чисел в античной математике. Принятие таких понятий как ноль, отрицательные числа, целые и дробные числа в средние века. Появление комплексных чисел в Новое время. Доказательство иррациональности числа Пи Ламбертом, Лежандром.

    реферат, добавлен 08.02.2017

  • Теория делимости, основанная на единственности разложения натурального числа на простые множители (основная теорема арифметики). Доказательство Э. Уайлсом гипотезы Шимуры-Таниямы. Главные особенности применения матриц и теории групп, результаты.

    статья, добавлен 03.03.2018

  • Современная формулировка великой теоремы Ферма. Доказательство: для всех троек (z,x,y) пифагоровых чисел; для всех членов семейства любой тройки пифагоровых чисел; для всех троек чисел, не больших числа z; для всех троек чисел натурального ряда чисел.

    реферат, добавлен 30.03.2017

  • Составление "коллекции" простых чисел способом "решето Эратосфена". Формулирование и возможности разрешения проблемы Гольдбаха-Эйлера. Рассмотрение линейных, плоских и телесных фигурных чисел. История многоугольных и дружественных чисел в математике.

    реферат, добавлен 08.12.2017

  • Рассмотрение основной задачи геометрии чисел, а также теоремы Минковского с её доказательством. Объяснение таких понятий геометрии чисел, как решётки и критические решётки. В работе приводится, так называемая, "неоднородная задача" геометрии чисел.

    курсовая работа, добавлен 22.04.2011

  • Цель работы – проанализировать натуральные числа с математической, философской, магической точек зрения. Частота появления натуральных чисел в математических задачах, головоломках, в различных литературных жанрах. Различные способы счета в древности.

    реферат, добавлен 14.03.2022

  • Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.

    презентация, добавлен 05.10.2015

  • Краткий исторический очерк, возникновение и развитие чисел. Поле алгебраических чисел, их суть и значение. Понятие числового поля, алгебраическое число. Рациональные приближения алгебраических чисел. Теорема Лиувиля, трансцендентные числа Лиувиля.

    реферат, добавлен 08.06.2010

  • Системы счисления (нумерация) – совокупность способов обозначения натуральных чисел. История появления и развития различных систем счисления. Сравнительный анализ позиционных и непозиционных систем счисления. Перевод из одной системы счисления в другую.

    реферат, добавлен 27.02.2009

  • Особенности зарождения счета в глубокой древности, основные этапы выработки понятия о числе. Участие пальцев в счете, появление первых систем счисления. Особенности письменной нумерации у древних народов. Понятие натуральных, дробных и рациональных чисел.

    реферат, добавлен 06.09.2015

  • Аналіз алгоритмів виконання арифметичних операцій над цілими числами великого діапазону. Принципи побудови пристроїв "фібоначчієвої" цілочисельної арифметики. Розробка алгоритмів відображення раціональних чисел. Побудова перетворювачів кодів і чисел.

    автореферат, добавлен 18.11.2013

  • Историческое развитие и сущность непозиционных систем счисления. Появление первых чисел и цифр на территории Египта. Понятие разрядности чисел, принципы применения древнегреческой и древнеримской нумерации. Правила основных мировых систем счисления.

    презентация, добавлен 09.11.2015

  • Комплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Свойства комплексных чисел. Описание действий с ними. Основная теорема алгебры. Модуль комплексного числа.

    реферат, добавлен 13.12.2022

  • Геометрическое представление комплексного числа. Модуль и аргумент в математике. Формула Муавра и правила извлечения корней. Алгебраическая, тригонометрическая и показательная формы комплексных чисел. Рассмотрение функций комплексного переменного.

    реферат, добавлен 15.10.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.