Понятия числа в математике

Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.

Подобные документы

  • Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.

    учебное пособие, добавлен 16.06.2015

  • Нахождение делителей и кратных чисел. Ознакомление с таблицей простых чисел. Разложение чисел на простые множители. Определение взаимно простых чисел. Правило нахождения наименьшего общего кратного. Сложение и вычитание дробей с разными знаменателями.

    разработка урока, добавлен 29.09.2017

  • Зарождение счета в древности. Появление систем счисления. Письменная нумерация у древних народов. История возникновения понятия натурального числа. Счет как основа арифметики. Натуральный ряд чисел. Функции натуральных чисел. История возникновения нуля.

    реферат, добавлен 29.01.2012

  • Натуральные числа, их формальное и аксиоматическое определение. История науки, изучающей чистые, формальные свойства натуральных чисел. Системы счисления, методы обозначения и теория чисел. Арифметические операции и расширение до целых чисел и дальше.

    реферат, добавлен 25.12.2014

  • Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.

    реферат, добавлен 15.12.2016

  • История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.

    реферат, добавлен 21.03.2013

  • Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.

    учебное пособие, добавлен 28.12.2013

  • Ознакомление с историей возникновения и областью применения цепных дробей. Изучение приближения действительных чисел (рациональных дробей с заданным ограничением для знаменателей, бесконечной последовательности рациональных чисел, наилучших приближений).

    курсовая работа, добавлен 01.07.2014

  • Понятие делимости чисел, изучение свойств делимости. Признаки делимости чисел, изучаемые и не изучаемые в школе. Овладение в совершенстве признаками делимости чисел, изучаемых на уроках математики и вне школьной программы. Применение признаков делимости.

    контрольная работа, добавлен 11.10.2021

  • Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.

    статья, добавлен 03.03.2018

  • Представление целых чисел с помощью письменных знаков. Характеристика аспектов биномиальной теоремы. Методика распределения простых чисел. Рассмотрение рациональных чисел как средства измерения. Теорема Лиувилля и конструирование трансцендентных чисел.

    книга, добавлен 25.11.2013

  • Двоичная система счисления: основные сведения и понятия. Представление двоичных чисел и перевод их в десятичные. Преобразование десятичных чисел в двоичные. Арифметические действия над двоичными числами: сложение, вычитание, умножение, деление.

    реферат, добавлен 21.08.2008

  • Исследование неоднородности свойств чётных составных чисел. Универсальное правило определения делимости. Содержание алгоритма нахождения простых чисел. Суммирование и вычитание цифр. Способы определения делимости нечетного числа с окончаниями 1, 3, 7.

    реферат, добавлен 29.09.2012

  • Представление рациональных чисел цепными дробями. Свойства подходящих дробей. Разложение действительного иррационального числа в правильную бесконечную цепную дробь, его приближение с заданным ограничением для знаменателя. Квадратические иррациональности.

    контрольная работа, добавлен 06.03.2010

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Зарождение и история развития систем счисления. Позиционные и непозиционные системы. Представление чисел с фиксированной и плавающей запятой. Перевод целых чисел из одной позиционной системы счисления в другую. Представление целых чисел в компьютерах.

    лабораторная работа, добавлен 04.09.2014

  • Использование десятичной системы счисления как один из наиболее важных факторов, от которых зависят основные свойства редукции натуральных чисел. Специфические особенности доказательства операции суммарного редуцирования любого натурального числа.

    статья, добавлен 25.06.2018

  • История математических исследований простых чисел как натуральных чисел, имеющих два различных натуральных делителя - единицу и самого себя. Представление простых чисел в виде значений квадратных многочленов. Описание спирали простых чисел С.М. Улама.

    статья, добавлен 28.03.2019

  • Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.

    учебное пособие, добавлен 19.01.2015

  • Множество чисел как упорядоченное множество бесконечных десятичных дробей. Изучение ограниченных и бесконечно малых последовательностей. Изучение первообразной функции и неопределенного интеграла. Дифференциальное исчисление функций многих переменных.

    курс лекций, добавлен 11.05.2015

  • Способы деления многочленов. Основная теорема алгебры комплексных чисел. Особенности попарного выделения сопряженных корней. Правила представления неправильных дробей. Использование метода неопределенных коэффициентов. Разложение функций на множители.

    лекция, добавлен 09.07.2015

  • Закон сохранения количества чисел джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Изоморфные свойства рядов четных и нечетных чисел натурального ряда. Определение простоты произвольного целого числа и факторизация.

    учебное пособие, добавлен 15.09.2012

  • Исследование основных особенностей позиционных и непозиционных систем счисления. Перевод целых десятичных чисел в недесятичную систему счисления. Характеристика операций сложения, вычитания и умножения многозначных чисел в различных системах счисления.

    реферат, добавлен 30.11.2016

  • Определение цепных дробей, их свойства и примеры. Представление действительных чисел цепными дробями общего вида. Золотое сечение – гармоническая пропорция, история данного понятия. Расчёт его числа при помощи ряда Фибоначчи и с помощью цепных дробей.

    реферат, добавлен 07.11.2011

  • Методы представления рациональных чисел цепными дробями и представления действительных иррациональных чисел правильными бесконечными цепными дробями. Способы оценки погрешности при замене действительного числа его подходящей дробью. Теорема Дирихле.

    курсовая работа, добавлен 25.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.