Неасимптотичні методи оцінювання параметрів у диференціальних системах, що перебувають під випадковим впливом
Побудова нерівностей для ймовірності великих відхилень оцінки невідомого параметру стохастичної диференціальної системи від його дійсного значення. Розгляд задач Коші для стохастичного параболічного рівняння і для стохастичного диференціального рівняння.
Подобные документы
Знайомство з властивостями розв’язків вироджених диференціальних рівнянь вищих порядків з обмеженнями на резольвенту поліноміального жмутка операторів. Аналіз підпростору розв’язків задачі Коші для виродженого диференціального рівняння вищого порядку.
автореферат, добавлен 28.12.2015Головний аналіз диференціального рівняння, що містить аргумент, функцію та її похідну. Особливість методики розв’язку задачі Коші. Лінійні та однорідні завдання другого порядку зі сталими коефіцієнтами залежно від коренів характеристичної теореми.
методичка, добавлен 07.09.2014Системи рівнянь, основні граничні та початкові умови що описують малі потенціальні рухи рідини поблизу рівноважного стану в лінійному наближенні. Методи оптимально-диференціального формулювання еволюційної задачі. Узагальнений розв`язок задачі Коші.
статья, добавлен 30.10.2016Дослідження задач асимптотичної поведінки для великих значень параметра лінійно незалежної системи розв’язків сингулярного диференціального та квазідиференціального рівнянь. Вивчення асимптотики власних функцій сингулярного диференціального оператору.
автореферат, добавлен 02.08.2014Дослідження умов існування та єдиності локальних і глобальних розв’язків нескінченних систем диференціальних рівнянь, що описують нескінченні ланцюги лінійно зв’язаних нелінійних осциляторів. Нелінійні різницеві рівняння з варіаційною структурою.
автореферат, добавлен 30.08.2014- 31. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженнями і особливостями
Розв’язок задачі Діріхле та задачі з косою похідною для еліптичних рівнянь другого порядку. Вирішення крайової задачі та задачі Коші для параболічного рівняння. Побудова оптимального керування системами, що описуються параболічною крайовою задачею.
автореферат, добавлен 28.12.2015 Дослідження встановлення достатніх умов існування нетривіального розв'язку з наперед заданою кількістю нулів що прямує до нуля на нескінченності для нелінійного сингулярного крайового диференціального рівняння другого порядку досить загального вигляду.
автореферат, добавлен 07.08.2014Задачі системи диференціальних рівнянь із запізненням та обмеженнями. Варіанти ітераційного та проекційно-ітеративного методів відшукання наближених розв’язків системи лінійних диференціальних рівнянь із запізненням та обмеженнями, умови оцінки похибки.
автореферат, добавлен 29.07.2014Розробка обчислювальної схеми для визначення невідомих параметрів матричного рівняння регресії. Аналіз похибок заокруглення. Застосування методу найменших квадратів. Використання перетворення Фур'є в алгоритмі розрізування лінійних систем з матрицями.
статья, добавлен 29.11.2016Розгляд питання про побудову головного члена двофазового асимптотичного солітоноподібного розв'язку задачі Коші для сингулярно збуреного рівняння Кортевега-де Фріза зі змінними коефіцієнтами у загальному випадку. Опис множини початкових значень.
статья, добавлен 04.02.2017Встановлення умов глобальної розв’язності та нерозв’язності задачі Коші для виродного параболічного рівняння з нелокальним джерелом. Аналіз визначення початкових функцій, що повільно спадають до нуля та містять нелокальний множник у від’ємному степені.
автореферат, добавлен 28.10.2015Абсорбер як технологічний об`єкт керування. Рівняння матеріальних балансів. Рівняння в безрозмірному виді змінних. Рівняння в канонічній формі і в формі Коші. Перетворення за Лапласом змінної часу. Передатні функції за каналами збурення і керування.
лекция, добавлен 28.02.2016Адаптивна апроксимація та ітераційні функції. Ітераційні процеси для класу задач, в яких виникають системи диференціальних рівнянь. Жорсткі та нелінійні диференціальні системи. Метод побудови ітераційної функції. Рівняння Ван Дер Поля, модель осцилятора.
статья, добавлен 11.01.2010Побудова множини позиційних керувань, що розв'язують задачу синтезу для лінійного диференціального рівняння та нелінійного рівняння за першим наближенням у гільбертових просторах. Розв'язання задачі позиційного синтезу обмежених інерційних керувань.
автореферат, добавлен 24.02.2014Диференціальні рівняння першого порядку та рівняння з відокремленими змінними, однорідні та лінійні диференціальні рівняння. Рівняння, які зводяться до лінійних. Рівняння Бернуллі та Ріккаті. Рівняння в повних диференціалах. Інтегруючий множник.
лекция, добавлен 08.08.2014Загальний вигляд системи одночасних рівнянь в матричній формі. Оцінювання систем одночасних рівнянь за непрямим методом найменших квадратів. Оцінка статистичної якості рівняння регресії, коефіцієнту детермінації. Адекватність економетрічної моделі.
контрольная работа, добавлен 22.07.2010Поняття ірраціонального рівняння як невідомого, який входить під знаком чи радикала, невідоме зводиться в ступінь із дробовим показником. Характеристика основних способів їх розв'язку. Порядок зведення рівняння в квадрат та використання методу заміни.
лекция, добавлен 26.01.2014Вивчення основ розв’язування систем однорідних рівнянь з сталими коефіцієнтами методом Ейлера та матричним методом, доведення теорем та виведення закономірностей. Властивості розв’язків лінійних неоднорідних систем. Особливості рішення задач Коші.
реферат, добавлен 19.11.2009Розв’язання кубічного алгебраїчного рівняння. Математична заміна підкореневого виразу. Метод Феррарі для рівнянь четвертого степеня. Виділення повного квадрата під радикалами. Розклад нерівностей на множники. Рівняння з кубічними ірраціональностями.
лекция, добавлен 24.01.2014Поняття про криві другого порядку. Коло та його рівняння. Еліпс, його рівняння та властивості. Гіпербола та її рівняння. Парабола та її рівняння. Властивості параболи. Полярні та параметричні рівняння кривих другого порядку. Гіперболічний косинус й синус.
лекция, добавлен 08.08.2014Розробка методів відшукання розв’язків крайових задач. Суть простої модифікації формули Даламбера. Аналіз теорії диференціальних рівнянь у частинних похідних. Побудова наближених періодичних рішень завдань для квазілінійних гіперболічних тотожностей.
статья, добавлен 28.07.2016Лінійне тригонометричне рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розклад рівняння на множники. Рівність однойменних функцій. Перетворення добутків на суми, сум на добутки. Системи тригонометричних рівнянь. Вправи для розв’язування.
лекция, добавлен 24.01.2014Доведення нерівностей за допомогою означення, сутність синтетичного та аналітичного методу. Структура класичних нерівностей між середніми та їх доведення. Наслідки з нерівності Коші. Застосування властивостей функцій та методів математичного аналізу.
методичка, добавлен 13.07.2017Вивчення застосування методу Фур'є до задач математичної фізики для гіперболічного рівняння. Дослідження оцінки розподілу супремуму розв'язання рівняння коливання струни та аналіз застосування отриманих результатів до моделювання розв'язання рівняння.
автореферат, добавлен 30.08.2014Методи розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. Властивості розв’язку однорідних рівнянь методом Ейлера та матричним. Задача Коші: частинний розв’язок неоднорідних систем, що задовольняє нульовій початковій умові.
контрольная работа, добавлен 08.11.2017