Неасимптотичні методи оцінювання параметрів у диференціальних системах, що перебувають під випадковим впливом
Побудова нерівностей для ймовірності великих відхилень оцінки невідомого параметру стохастичної диференціальної системи від його дійсного значення. Розгляд задач Коші для стохастичного параболічного рівняння і для стохастичного диференціального рівняння.
Подобные документы
Дослідження особливостей розв’язання задачі Коші для параболічного рівняння з імпульсним впливом. Основні поняття p-адичного аналізу. Властивості розв’язку задачі Коші над полем. Формули диференціювання теплових потенціалів виразів, на основі лем.
статья, добавлен 25.03.2016Розв'язок лінійного дифузійного стохастичного диференціального рівняння з частинними похідними із зовнішніми випадковими збуреннями. Умови коефіцієнтів асимптотичної стійкості й нестійкості в середньому квадратичному сильного розв’язку цього рівняння.
статья, добавлен 25.08.2016Способи вдосконалення методу Ейлера. Розгляд принципу побудови модифікованого методу Ейлера, його суть в обчисленні значень диференціального рівняння (ДР). Значення методу Рунге-Кутта для розв’язання ДР першого порядку, розв’язання задачі Коші для нього.
контрольная работа, добавлен 30.04.2018Поняття звичайного диференціального рівняння, існування та єдність його розв'язку. Метод ламаних Ейлера. Наближене розв'язання диференціального рівняння І порядку. Загальний розв'язок рівняння у'=у+3 і задача Коші для рівняння з початковою умовою: у(0)=1.
контрольная работа, добавлен 06.10.2010Поняття нормальної системи звичайних диференціальних рівнянь. Характеристика методу виключення, його використання. Розв’язання диференціального рівняння n-го порядку. Розрахунок лінійного однорідного рівняння другого порядку зі сталими коефіцієнтами.
задача, добавлен 15.03.2014Умови порушення єдиності розв’язку задачі Діріхле з комплексними матричними коефіцієнтами в просторах гладких функцій з поліноміальним ростом на нескінченності для диференціального рівняння другого порядку. Принципи однозначної розв’язності задачі Коші.
автореферат, добавлен 24.07.2014З’ясування розв'язку задачі Коші. Розгляд параболічного за Петровським рівняння довільного порядку. Наявність членів з лінійно зростаючими на нескінченності коефіцієнтами. Відсутність залежності від просторових змінних. Застосування перетворення Фур'є.
статья, добавлен 25.08.2016Поняття диференціального рівняння, задача, ознаки і теорема О.Л. Коші, її геометричний зміст. Ознаки та приклади загального або частинного розв’язку (інтеграли) диференціального рівняння першого порядку та з відокремленими і відокремлюваними змінними.
лекция, добавлен 01.05.2014Розробка коректного розв'язку двоточкової крайової задачі про відшукання періодичного розв'язку параболічного рівняння вищого порядку з імпульсною дією. Методика постановки задачі Коші для параболічного псевдодиференціального рівняння вищого порядку.
автореферат, добавлен 26.08.2015Поняття однорідного рівняння та функції, сутність однорідного диференціального рівняння. Задача про параболічний прожектор: мередіальний переріз поверхні обертання та заміна змінної розв’язання диференціального рівняння з відокремлюваними змінними.
лекция, добавлен 01.05.2014Властивості розв'язків лінійного однорідного диференціального рівняння. Необхідні і достатні умови лінійної незалежності розв'язків лінійного однорідного диференціального рівняння n–го порядку. Фундаментальна система розв'язків диференціального рівняння.
реферат, добавлен 30.05.2013Оцінка ефективності явних обчислювальних схем числового розв’язку задачі Коші для звичайного диференціального рівняння. Рекомендації щодо ефективного застосування методу диференціально-тейлорівських перетворень для числового інтегрування рівнянь.
статья, добавлен 29.07.2016Розв’язання параболічних задач на рімановому многовиді недодатної секційної та швидкоспадної скалярної кривизни. Доведення існування стрибка потенціалу подвійного шару. Побудова фундаментального розв’язку параболічного рівняння зі зсувом на многовиді.
автореферат, добавлен 27.07.2014Основні поняття і визначення диференціальних рівнянь вищих порядків. Метод виключення (зведення нормальної системи до прикладу n-го порядку). Лінійні системи диференціальних рівнянь. Системи у симетричній формі. Однорідне і неоднорідне рівняння.
учебное пособие, добавлен 16.10.2014Асимптотичний метод інтегрування системи з малим параметром при частині похідних з точкою звороту. Властивості розв'язків сингулярно збуреного матричного диференціального рівняння. Системи диференціальних рівнянь з лінійним відхиленням аргументу.
автореферат, добавлен 19.07.2015Пошук асимптотичних розв'язків лінійної сингулярно збуреної системи диференціальних рівнянь у випадку кратних коренів характеристичного рівняння за допомогою методу збуреного характеристичного рівняння. Побудова формальних розв’язків системи рівнянь.
статья, добавлен 04.02.2017Дослідження особливостей узагальненого методу відокремлення змінних задач з локальними багатоточковими умовами за часом і задач Коші для полілінійних диференціальних рівнянь та полілінійних систем диференціальних рівнянь із частинними похідними.
автореферат, добавлен 15.07.2014Поява диференціальних рівнянь. Методи збурень, які використовуються в механіці. Умови існування періодичних розв’язків. Теореми про граничні значення. Нелінійні диференціальні рівняння другого порядку. Методи розв’язання деяких типів нелінійних рівнянь.
курсовая работа, добавлен 22.06.2012Одержання нових інтегральних оцінок точності методу перетворення Келі для наближення операторних експоненти і косинуса та доведення їх непокращуваності за порядком. Побудова нового методу дискретизації задачі Коші для неоднорідного рівняння 1-го порядку.
автореферат, добавлен 28.08.2014Прямі лінійні, обернені нелінійні задачі. Початково-крайові для рівнянь параболічного та гіперболічного типів, включаючи векторний випадок (рівняння Нав'є-Стокса). Задачі реконструкції включення в обмеженому тілі за відомими даними Коші на границі тіла.
автореферат, добавлен 29.07.2014Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.
лекция, добавлен 01.05.2014Поняття, означення й теорема про достатні умови існування і єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Випадки, коли рівняння можна проінтегрувати. Загальний метод введення параметра, неповні рівняння. Розв’язок задачі Коші.
реферат, добавлен 06.11.2017- 23. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Розв’язння задачі Коші для багатовимірних систем лінійних функціонально-диференціальних рівнянь загального вигляду. Монотонна залежність розв’язання початкової задачі від адитивних збурень заданого рівняння та початкових умов, ітераційні процеси.
автореферат, добавлен 29.07.2014 Історичний обрис розвитку теорії диференціальних рівнянь. Лінійні однорідні та неоднорідні рівняння 2-го порядку з сталими коефіцієнтами. Основні види диференціальних рівнянь 1-го та 2-го порядку та методи їх розв’язування. Графічний метод інтегрування.
реферат, добавлен 29.11.2014Знаходження екстремуму функції від багатьох змінних. Інтегральне числення. Використання поняття визначеного інтегралу в економіці. Диференціальні рівняння. Задача Коші. Застосування диференціальних рівнянь в економіці. Рівняння з розділеними змінними.
учебное пособие, добавлен 24.10.2023