Матрицы и действия над ними
Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.
Подобные документы
Понятие направления. Свойства операции сложения векторов. Умножение вектора на число. Линейная зависимость векторов. Координаты вектора. Скалярное произведение векторов. Векторное произведение двух векторов. Смешанное произведение трех векторов.
методичка, добавлен 17.05.2012Равенство матриц и их транспонирование. Правила сложения матриц. Умножение матрицы на число. Свойство определителя. Способы вычисления определителей. Ранг матрицы. Элементарные преобразования матрицы. Вычисление обратной матрицы высокого порядка.
контрольная работа, добавлен 06.12.2011Основные операции над матрицами и их свойства. Определитель квадратной матрицы. Транспонирование – перемена ролями строк и столбцов матрицы. Подчинение следующим законам: коммутативному и ассоциативному. Понятие определителей и их определение символами.
реферат, добавлен 24.03.2015Изучение теоремы о верхнем и нижнем разложении матрицы, имеющей ненулевую диагональ. Ознакомление с расчетными формулами, используемыми для построения матриц. Очерк математических выражений по методу Гаусса и алгоритмы для ряда системных уравнений.
презентация, добавлен 30.10.2013Понятие математических матриц, источники их формирования и развития в науке. Основные элементы и их взаимодействие. Описание действий с таблицами: сложение, вычитание, умножение между собой и на число. Рассмотрение свойств транспортированных матриц.
презентация, добавлен 23.12.2013Характеристика сущности и свойств матрицы. Анализ специфики ортогональных и унитарных матриц. Изучение детерминант матриц и их свойств. Примеры нахождения определителей N-го порядка. Примеры решения задач на определение видов и детерминант матриц.
курсовая работа, добавлен 31.10.2017- 32. Ранг матрицы
Понятие ранга матрицы как наивысшего порядка отличных от нуля миноров матрицы. Определение базисного минора. Сущность элементарных преобразований. Умножение ряда (строки или столбца) на число, не равное нулю. Получение эквивалентной и ступенчатой матрицы.
лекция, добавлен 26.01.2014 Порядок выполнения действий с матрицами: сложение (вычитание), транспонирование матриц, их умножение. Действия с матрицами третьего порядка. Понятие обратной матрицы, ее обозначение и пример нахождения, последовательность действий при решении задачи.
лекция, добавлен 11.10.2012Скалярное произведение векторов как число, равное сумме произведений соответствующих компонент этих векторов. Скалярное произведение товаров как их общая стоимость. Свойства скалярного произведения. Условие ортогональности. Неравенство Коши-Буняковского.
презентация, добавлен 21.09.2013Понятие и классификация векторов. Действия и линейные операции над векторами, их умножение на число и на матрицу. Скалярное, векторное, смешанное произведение векторов и их свойства (перестановки, распределения, сочетания, ортогональности, квадрата).
реферат, добавлен 07.09.2012- 36. Решение матриц
Этапы нахождение определителя матрицы, минора и алгебраического дополнения к элементам матрицы. Особенности решение системы линейных алгебраических уравнений методами Крамера и Гаусса. Нахождение собственных чисел и собственных векторов матрицы.
контрольная работа, добавлен 11.04.2009 Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.
презентация, добавлен 23.10.2020Вычисление суммы и разности заданных квадратных матриц, произведения матрицы и числа. Расчет детерминантов второго, третьего и четвертого порядка и поверка вычислений. Определение переменной в системе линейных уравнений с помощью матричного метода.
задача, добавлен 31.07.2011- 39. Линейная алгебра
Матрица и определители. Применение способа разложения по элементам столбца (строчки). Алгебраические дополнение элемента матрицы. Решение системы линейных уравнений. Составление общего уравнения плоскости, проходящей через точку перпендикулярно вектору.
контрольная работа, добавлен 20.03.2017 - 40. Обратная матрица
Теорема о существовании и единственности обратной матрицы. Операция обращения матрицы, ее свойства. Вычисление обратной матрицы с помощью алгебраических дополнений или методом Гаусса (используя преобразования Жордана). Решение матричных уравнений.
лекция, добавлен 11.12.2014 Способы задания плоскостей в пространстве. Основные аксиомы стереометрии. Изучение возможных вариантов взаимного расположения плоскостей в пространстве, их основные признаки и свойства. Скалярное произведение двух векторов, зная координаты этих векторов.
реферат, добавлен 20.02.2017Декомпозиция при моделировании в электроэнергетике. Структура электроэнергетики Украины. Элементы теории матриц. Определители и их свойства. Обратная матрица. Алгоритм сканирования. Обращение матрицы методом разбиения на блоки. Формулы Фробениуса.
курс лекций, добавлен 18.08.2013Понятие матрицы. Основные операции над матрицами. Понятие определителя матрицы. Вычисление определителей матрицы. Способ вычисления определителя n-го порядка. Основные свойства определителей. Методика решения систем линейных уравнений методом Крамера.
реферат, добавлен 20.02.2012Скалярное произведение векторов. Смешанное и векторное произведения векторов. Прямая на плоскости. Кривые второго порядка на плоскости. Плоскость и прямая в пространстве. Понятие о поверхностях второго порядка в трехмерном пространстве. Сфера и эллипсоид.
учебное пособие, добавлен 23.03.2013- 45. Линейная алгебра
Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.
методичка, добавлен 29.12.2015 Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.
курс лекций, добавлен 02.05.2014Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.
методичка, добавлен 14.12.2010Матрица и её основные свойства, ранг, определитель и способы его поиска, обратная матрица. Решение системы линейных уравнений по формулам Крамера. Использование матрицы в решении системы уравнений и определении длины вектора, поиск базисных решений.
контрольная работа, добавлен 27.11.2015Матрицы и определители, операции над ними. Линейная зависимость системы векторов, свойства векторного произведения. Комплексные числа. Прямая в пространстве. Взаимное расположение прямой и плоскости. Кривые второго порядка. Решение систем уравнений.
методичка, добавлен 22.12.2010- 50. Ранг матрицы
Определитель с элементами, стоящими на пересечении строк, и столбцов матрицы. Правило вычисления ранга матрицы. Перебор всех возможных миноров. Элементарные преобразования: умножение, прибавление и перестановка рядов. Метод "окаймляющих миноров".
лекция, добавлен 29.09.2013