Матрицы и действия над ними
Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.
Подобные документы
Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Полная и сокращенная запись квадратной и прямоугольной матрицы, понятие вектора. Основные виды операций, производимых над матрицей: транспонирование, произведение на матрицу и на число, сумма. Свойства определителей, их разложение по строке или столбцу.
реферат, добавлен 16.06.2014Действия с линейными операторами. Произведение оператора на число. Результат последовательного применения на вектор-прообраз х в пространстве Х. Изучение характеристического многочлена матрицы. Собственные векторы и числа, системы линейных уравнений.
лекция, добавлен 26.11.2013Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.
книга, добавлен 23.11.2010Ознакомление с формульным выражением симметричной квадратной матрицы. Определение свойств матриц смежности и инцидентности. Расчеты ориентированного мультиграфа при нулевой, либо линейной комбинации строк. Обзор теоремы ориентированного псевдографа.
лекция, добавлен 18.10.2013Понятие, свойства и характеристика основных видов матриц, а именно матрица размера mхn, квадратная, единичная, симметрическая и диагональная. Описание операций по составлению суммы и разности матриц, оценка их результатов. Сущность преобразования подобия.
контрольная работа, добавлен 16.06.2010Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.
курс лекций, добавлен 20.08.2017Сведения об умножении матриц, характеристика его свойств. Умножение матриц произвольного формата, их разбиение. Ассоциативность умножения матриц произвольного формата. Матрицы как линейные операторы. Построение матрицы по заданной формуле отображения.
курсовая работа, добавлен 02.03.2019Матрица как прямоугольная таблица, которая составлена из чисел. Общая характеристика основных свойств обратной матрицы, анализ способов нахождения. Рассмотрение проблем выбора начального приближения. Знакомство с особенностями метода Гаусса-Жордана.
реферат, добавлен 20.05.2021Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.
лекция, добавлен 18.03.2015Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.
курс лекций, добавлен 10.09.2016Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.
курсовая работа, добавлен 23.04.2011Определение матрицы интенсивностей переходов по графу. Непрерывная цепь Маркова и распределение вероятностей. Алгебраические уравнения для финальных вероятностных состояний. Произведение всех интенсивностей, их значение при решении примеров и задач.
контрольная работа, добавлен 09.02.2012Матрицы и действия над ними. Вычисление определителя и транспонирование матрицы. Технология выполнения операций в среде Excel. Вычисление обратной матрицы с помощью функции МОБР. Решение систем линейных уравнений методом Жордана-Гаусса. Свойства вектора.
методичка, добавлен 25.06.2013Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012Раскрытие сущности матрицы - математического объекта, записываемого в виде прямоугольной таблицы элементов кольца или поля. Математические действия, осуществляемые над матрицами. Сложение и умножение матриц. Транспонирование. Определители и их свойства.
контрольная работа, добавлен 02.12.2013- 67. Матричный анализ
Сумма элементов матрицы по строкам. Алгоритм нахождения обратной квадратной матрицы и ее определителя. Решение системы линейных уравнений методом Крамера и Гаусса. Построение математической модели экономического процесса и определение плана производства.
контрольная работа, добавлен 21.05.2013 Определения и пример нахождения собственного значения и собственного вектора матрицы. Системы линейных алгебраических уравнений. Методы Зейделя и Якоби для решения систем линейных алгебраических уравнений. Программа на C++ для решения СЛАУ методом Якоби.
курсовая работа, добавлен 23.04.2011Назначение матриц в системах линейных уравнений, операции над матрицами, правила их сложения матриц и умножения на скаляр, транспонирование произведения двух матриц. Понятие и свойства определителя квадратной матрицы, доказательство теоремы Коши-Бине.
курсовая работа, добавлен 11.01.2015Дифференциальное и интегральное исчисления. Основные типы матриц. Миноры и алгебраические дополнения. Союзная и обратная матрицы. Правило Крамера для решения линейных уравнений. Билинейная и квадратичная форма. Собственные числа и линейное пространство.
реферат, добавлен 02.06.2021Определение понятий матрицы и ранга матрицы, а также описание алгоритма Гаусса. Анализ сути метода окаймляющих миноров. Характеристика алгоритма и пример вычисления ранга матрицы методом окаймляющих миноров. Анализ вычислительной сложности алгоритма.
курсовая работа, добавлен 17.03.2017- 72. Ранг матрицы
Определение минора k-го порядка матрицы. Использование методов окаймляющих миноров и элементарных преобразований для вычисления ее ранга. Линейная зависимость строк (столбцов) математических таблиц. Исследование систем линейных алгебраических уравнений.
презентация, добавлен 29.08.2015 Изучение сведений о матрицах. Рассмотрение алгебры матриц. Обзор определителей квадратных матриц. Анализ системы линейных уравнений. Определение положения векторов на плоскости и в трехмерном пространстве. Оценка элементов аналитической геометрии.
учебное пособие, добавлен 13.04.2019Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.
учебное пособие, добавлен 25.11.2012Невырожденные матрицы второго порядка. Теорема о разложении матрицы в линейную комбинацию ее сопряжённых корней. Условие идемпотентности квадратных матриц второго порядка. Нелинейные системы уравнений второго порядка, задаваемые матричными уравнениями.
научная работа, добавлен 04.05.2012