Элементы комбинаторики
Краткая история и значение термина "комбинаторика". Разнообразие комбинаторных формул. Правило суммы и произведения, пересекающиеся множества. Круги Эйлера. Размещения и сочетания без повторений. Перестановки с повторениями. Примеры решения задач.
Подобные документы
Изучение основных формул комбинаторики. Анализ примеров абсолютно непрерывных распределений. Характеристика теоремы Пуассона для схемы Бернулли. Рассмотрение особенностей использования формулы свёртки. Изучение основных свойств коэффициента корреляции.
учебное пособие, добавлен 28.12.2013Принципы сложения и умножения. Общее понятие о подмножествам. Принцип включения и исключения. Размещения с повторениями, сочетания. Треугольник Паскаля. Бином Ньютона и полиноминальная формула (комбинаторный смысл). Главные свойства перестановок.
презентация, добавлен 27.09.2017Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.
презентация, добавлен 19.09.2017Нумерация перестановок и процесс их отображения. Теоремы о числе перестановок и об их лексикографическом переборе. Перебор наборов индексов. Задача о минимуме суммы попарных произведений. Нахождение максимальной возрастающей подпоследовательности.
презентация, добавлен 07.03.2012Формулы и принципы комбинаторики, применение ее в теории вероятностей для подсчета вероятности случайных событий. Изучение закономерности массовых случайных явлений, правильное понимание статистических закономерностей, проявляющихся в природе и технике.
контрольная работа, добавлен 24.03.2018Знакомство с описанием закономерностей аппроксимации частичной суммы обобщенного гармонического числового ряда. Анализ варианта аналитической оценки частичной суммы обобщенного гармонического ряда форме Эйлера. Особенности постоянной Эйлера-Маскерони.
статья, добавлен 12.05.2018Понятие и общая математическая характеристика множества, его главные свойства и отличительные признаки. Способы задания числовых значений. Описание основных операций, проводимых над множествами: объединение и пересечение. Диаграмма Эйлера-Венна.
контрольная работа, добавлен 04.12.2013- 58. Алгебра множеств
Основное правило комбинаторики. Теория булевых функций, булева алгебра характеристических векторов и высказываний. Определение и способ задания булевых функций. Дизъюнктивные и конъюнктивные нормальные формы. Эйлеровы графы, сети, пути в орграфах.
курс лекций, добавлен 18.03.2010 Рассмотрение логических или нечисловых задач, которые составляют обширный класс нестандартных задач. Анализ разных способов решения логических задач. Особенности методов рассуждений, таблиц, графов, блок-схем, бильярда, метода с помощью кругов Эйлера.
статья, добавлен 25.02.2019Использование математической схемы при обучении учащихся решению задач. Применение занимательной комбинаторики для обучения младших школьников. Психологические особенности формирования универсальных учебных действий у учащихся начальных классов.
статья, добавлен 04.08.2021Изучение комбинаторики, основных формул теории вероятностей, геометрической вероятности, теорема Бернулли, Муавра-Лапласа, дискретных случайных величин и закона их распределения, а также определение коэффициента корреляции с помощью решения задач.
задача, добавлен 24.02.2014Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.
учебное пособие, добавлен 13.01.2014Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.
реферат, добавлен 07.11.2015Место задачи коммивояжера в теории комбинаторики с ее применением при разработке программного обеспечения. Постановка и математическая модель задачи коммивояжера. Особенности решения задачи коммивояжера методом ветвей и границ и венгерским методом.
курсовая работа, добавлен 23.04.2014Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Общая схема численных методов. Локальная ошибка дискретизации метода Эйлера. Применение многошаговой системы перехода от точки (Xi, Yi) к следующей.
контрольная работа, добавлен 02.05.2013- 66. В мире процентов
История процента и знака процента. Формулы для решения задач на проценты. Основные типы задач на проценты, методы и примеры их решения. Процент в повседневной жизни. Подборка задач в помощь учащимся 9-ых классов для подготовки к экзамену по математике.
творческая работа, добавлен 03.05.2019 - 67. Аликвотные дроби
Характеристика истории происхождения аликвотных дробей и их применения в Древнем Египте. Примеры применения аликвотных дробей в жизни. Описание формул аликвотных дробей. Анализ гипотезы Эрдёша-Страуса. Примеры решения задач с помощью аликвотных дробей.
реферат, добавлен 06.02.2017 Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.
курс лекций, добавлен 08.01.2016Элементы теории графов и комбинаторики. Использование в доказательстве теоремы Кэли. Разбиение и композиции натуральных чисел. Изучение работ венгерского математика Кенинга в 30-е годы XX столетия по математической дисциплине теории графов и элементов.
курсовая работа, добавлен 23.12.2020Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Изучение комплексных чисел в рамках школьной математической программы. Описание правил сложения, вычитания и других действий. Вывод формул сокращенного умножения. Решение примеров с комплексными числами. Представление множества в виде кругов Эйлера.
реферат, добавлен 02.05.2019Основные закономерности теории вероятностей. Элементы комбинаторики. Система случайных величин. Вероятностный смысл плотности распределения. Законы больших чисел. Линейная регрессия. Статистическая проверка гипотез. Понятие о множественной корреляции.
учебное пособие, добавлен 08.12.2013Комбинаторика как выбор и расположение элементов некоторого множества в соответствии с заданными правилами. Классические комбинаторные задачи. Задача коммивояжера, имеющая ряд применений в исследовании операций при решении некоторых транспортных проблем.
курсовая работа, добавлен 25.08.2016