Методы оптимизации в ТКС
Методы поиска точек экстремума функции на отрезке: простого перебора, золотого сечения, деления отрезка. Сущность и содержание методов с использованием информации о производной функции: средней точки, касательной, секущих, кубической аппроксимации.
Подобные документы
Геометрический смысл производной. Зависимость между дифференцируемостью и непрерывностью функции. Таблица элементарных производных. Признаки постоянства, возрастания и убывания функций. Максимум и минимум функции. Признаки существования экстремума.
контрольная работа, добавлен 19.01.2013Изучение определенного множества, на примере производной функции имеющей бесконечную правостороннюю и левостороннюю производную. Очерк нахождения функции путем дифференцирования в точке. Характеристика геометрического и физического смысла производной.
лекция, добавлен 29.09.2013Анализ понятия и свойств непрерывных функций. Характеристика непрерывности некоторых элементарных функций. Классификация точек разрыва. Описание непрерывности функции в точке, на интервале и отрезке. Анализ экономического смысла непрерывной функции.
курсовая работа, добавлен 07.04.2016- 79. Золотое сечение
Функции чисел, понятие золотого сечения. Числа Фибоначчи, "Золотой" прямоугольник. Золотое сечение в живописи, особенности применения принципа золотого сечения в современный мире. Золотое сечение и тело человека. Рассмотрение работ Рафаэля, Дюрера.
контрольная работа, добавлен 11.09.2020 Исследование концепции обучения учеников нахождению возрастания и убывания функции по ее графику, а так же по графику её производной. Сравнительная таблица нахождения промежутков монотонности по графикам функции или её производной. Примеры решения задач.
статья, добавлен 19.05.2016Локальный экстремум функции. Отыскание наибольшего и наименьшего значения непрерывной функции на отрезке. Расчет интервалов выпуклости графика кривой и точек перегиба функции. Определение интервалов возрастания и убывания функций с помощью производных.
лекция, добавлен 07.07.2015Определение производной. Схема вычисления производной. Основные правила дифференцирования. Производная сложной и обратной функций. Использование понятия производной в экономике. Понятие дифференциала функции и его применение в приближенных вычислениях.
курсовая работа, добавлен 16.09.2013Анализ функций, не имеющих производной: разрывные и непрерывные; понятия функций; непрерывные функции, не имеющие производной ни в одной точке (функции Ван-дер-Вардена); правая и левая производные и функции комплексного переменного (условие Коши-Римана).
лекция, добавлен 27.05.2014Аппроксимация, при которой приближение строится на заданном дискретном множестве точек. Интерполяционный полином Лагранжа в виде разложения. Получение интерполяционного многочлена функции. Оценка погрешности остаточного члена при вычислении логарифма.
курсовая работа, добавлен 13.03.2014Нахождение стационарных точек функций двух и трех переменных, вычисление их экстремальных точек и значений. Составление функции Лагранжа. Решение задачи линейного программирования симплекс-методом. Методы определения начального плана транспортной задачи.
контрольная работа, добавлен 16.10.2017Производная функции как одно из фундаментальных понятий математики. Применение производной при решении физических, химических и биологических задач. Особенности решения с помощью производной функции задач с географическим и экономическим содержанием.
творческая работа, добавлен 25.01.2015Аппроксимации функций, численное дифференцирование и интегрирование. Оценка погрешности квадратурных формул Ньютона-Котеса. Поиск минимума, случай одной переменной. Метод золотого сечения. Интерполяционный многочлен Ньютона для равноотстоящих узлов.
курс лекций, добавлен 03.07.2013Анализ подхода, основанного на приближении таблично заданной функции с помощью алгебраического интерполяционного многочлена Лагранжа. Построения формулы для вычисления второй производной с использованием аппроксимации. Метод неопределенных коэффициентов.
презентация, добавлен 30.10.2013Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021Непрерывность функции в точке и на множестве. Точки разрыва функции и их классификация. Действия над непрерывными функциями. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке, равномерная непрерывность функции.
лекция, добавлен 10.02.2016Итеративные методы для решения задач оптимизации аналитическими методами. Регулярные алгоритмы в задачах на безусловный и условный экстремумы. Поисковые и беспоисковые алгоритмы. Алгоритмы стохастической аппроксимации как вероятностные алгоритмы.
лекция, добавлен 22.07.2015Изучение возможных типов особых точек кубической системы на бесконечности в случае, когда их число равно четырем. Обоснование истинности ранее полученного результата Шарипова Ш.Р., который является частным случаем обсуждаемых практических исследований.
статья, добавлен 31.05.2013Дифференцируемая и монотонная функция на промежутке Х. Дифференцирование функции с производной, не равной нулю, при условии что производная обратной функции равна обратной величине производной исходной функции. Приращение независимой переменной y.
презентация, добавлен 21.09.2013- 94. Методика разработки элективного курса "Приложение производной" в условиях профильной дифференциации
Проведение операции нахождения производной. Исследование таблицы формул дифференцирования. Определение интервалов монотонности и экстремумов. Основная характеристика изучения интервалов выпуклости, вогнутости, а также точек перегиба графика функции.
курсовая работа, добавлен 03.10.2022 Нахождение двух наименьших положительных корней уравнения. Рассмотрение метода деления отрезка пополам. Описание программного алгоритма этого метода. Определение значения корней с необходимой точностью. Характеристика метода итераций, пример решения.
лабораторная работа, добавлен 24.11.2014Обучение учащихся и студентов отысканию производной сложной функции. Правила вычисления производных алгебраической суммы функций, произведения и частного функций. Упражнения на применение изученных формул и правил. Дифференцирование сложной функции.
статья, добавлен 18.02.2020Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.
курсовая работа, добавлен 16.06.2021Нахождение области определения функции двух вещественных переменных. Получение уравнения изолиний функции двух вещественных переменных. Нормальный вектор касательной плоскости. Математические модели пары двойственных задач линейного программирования.
контрольная работа, добавлен 25.06.2013Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.
курсовая работа, добавлен 22.04.2011Основные принципы управления. Идентификация объектов управления, алгоритмы их оптимизации. Численные, градиентные, квазиньютоновские, комбинированные методы оптимизации. Аналитические методы исследования невыпуклых задач. Сущность проблемы нелокальности.
курс лекций, добавлен 07.04.2015