Методы оптимизации в ТКС
Методы поиска точек экстремума функции на отрезке: простого перебора, золотого сечения, деления отрезка. Сущность и содержание методов с использованием информации о производной функции: средней точки, касательной, секущих, кубической аппроксимации.
Подобные документы
Локализация корня путем осуществления выбора начального отрезка. Определение достаточного условия сходимости метода на выбранном отрезке. Проверка монотонности при помощи первой производной. Рассмотрение условия выхода из цикла уточнения корня.
лабораторная работа, добавлен 24.04.2015- 102. Метод ломаных
Методика поиска точки глобального минимума на отрезке, где функция удовлетворяет условию Липшица на этом отрезке. Описание алгоритма метода ломаных и анализ полученных результатов. Свойства соответствующего семейства. Вычисление константы Липшица.
контрольная работа, добавлен 04.06.2015 Постановка задачи и основные этапы отыскания решения. Погрешности и критерии окончания метода деления отрезка пополам при решении нелинейного уравнения. Применение метода Ньютона, простых итераций, секущих и ложного положения при вычислительном процессе.
контрольная работа, добавлен 28.03.2015- 104. Непрерывные функции
Непрерывность функции в точке. Основные характеристики функций, непрерывных в точке. Понятие непрерывности функции на отрезке. Точки разрыва функции и их классификация. Точка разрыва первого рода, точка устранимого разрыва и точка разрыва второго рода.
реферат, добавлен 03.08.2010 Исследование и построение графика функции. Вычисление односторонних пределов и точек пересечения с осями координат. Расчет частных производных первого порядка. Изучение на экстремум функции двух переменных. Проведение поиска выпуклостей и точек перегиба.
контрольная работа, добавлен 22.10.2013Классическая постановка задачи оптимизации. Стандартные методы решения. Численные методы оптимизации. Применение моделей оптимизации. Особенности, связанные с применением аналитических методов оптимизации. Алгоритм аналитической оптимизации функций.
реферат, добавлен 13.11.2011- 107. Численные методы
Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.
методичка, добавлен 26.09.2016 Сущность и содержание исследуемого метода как процедуры эвристического типа, предваряющей использование метода одномерного поиска, которому требуется начальный отрезок локализации минимума. Алгоритм Свенна, его этапы и назначение. Метод деления пополам.
контрольная работа, добавлен 05.07.2014Методы поиска решений нелинейных уравнений, сущность метода Ньютона. Интерполяция функции с помощью полинома Лагранжа. Вычисление интеграла по формуле трапеций с тремя десятичными знаками, расчет интеграла по формуле Симпсона. Оптимизация функции.
контрольная работа, добавлен 13.10.2014История возникновения и математическая сущность золотого сечения, использование принципов в изобразительном искусстве, скульптуре и литературе. Пропорции золотого сечения, создающие впечатление гармонии красоты, построение золотой пропорции в геометрии.
статья, добавлен 02.03.2019Описание функций одной и многих переменных, исследование задач на максимум и минимум - локальных свойств функции. Использование высших производных. Необходимые условия и достаточные дифференциальные признаки экстремума. Понятие условного экстремума.
курсовая работа, добавлен 08.09.2010Рассмотрение понятий: аргумента, области определения. Методика изучения линейной, квадратной и кубической функции. Изучение уравнений параболического типа. Основные характеристики математических функций. Достаточные условия экстремума уравнения.
курсовая работа, добавлен 05.05.2015Аксиомы стереометрии, их сущность и содержание. Построение сечения тетраэдра и сечения через точки. Основные понятия и теоремы стереометрии. Построение сечения тетраэдра плоскостью, проходящей через возможные точки. Примеры задач для контрольной работы.
презентация, добавлен 13.04.2012Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.
контрольная работа, добавлен 10.04.2020- 115. Теория функций
Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.
контрольная работа, добавлен 20.12.2013 Исследования локальных свойств плоской кривой. Предельное положение секущей, когда две общие с кривой точки сечения, стремясь друг к другу, совпадут. Применение приема проведения касательной к кривой из точки, заданной вне кривой с помощью кривой ошибок.
курсовая работа, добавлен 23.03.2016Сущность и содержание аппроксимации функций, ее основные методы и сравнительная характеристика: интерполяция и среднеквадратичное приближение. Интерполяция как один из способов аппроксимации функций. Разновидности многочленов и способы интерполяции.
лекция, добавлен 14.05.2013Вычисление значения функции в точках, подозрительных на глобальный экстремум. Нахождение наклонной асимптоты, точек, в которых производная функции равна нулю. Определение промежутков выпуклости и точек перегиба функции. Построение эскиза графика функции.
контрольная работа, добавлен 26.04.2012- 119. Интегрирование ФКП
Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.
презентация, добавлен 17.09.2013 Главная задача теории аппроксимации. Основная теорема данной концепции в линейном нормированном пространстве и в пространстве Гильберта. Круг идей Чебышева, переход к периодическим функциям. Методы аппроксимации, приближение функции многочленами.
контрольная работа, добавлен 02.11.2010Тригонометрическая форма записи комплексных чисел, предел их последовательности. Понятие функции комплексного переменного, его дифференцируемость. Геометрический смысл определения производной функции. Гиперболические функции вещественного переменного.
курс лекций, добавлен 15.09.2017Вычисление значения функции в точке. Характеристика интегральной суммы функции на отрезке. Определение нижнего и верхнего предела интегрирования. Рассмотрение методов применения формулы Ньютона-Лейбница. Установление основных способов замены переменной.
задача, добавлен 17.02.2016Вычисление пределов функций без использования правила Лопиталя. Нахождение производных функций с использованием формул и правил дифференцирования. Нахождение наибольшего и наименьшего значения функции на отрезке. Нахождение интервалов монотонности.
контрольная работа, добавлен 06.01.2015Изучение формулы бесконечно убывающей геометрической последовательности. Способы задания функции одной переменной. Геометрический смысл понятия "предел". Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз.
лекция, добавлен 26.01.2014- 125. Производные функции
Определение производной функции через предел. Общепринятые обозначения. Дифференцируемость. Геометрический и физический смысл производной. Производные высших порядков. Способы записи производных. Правила дифференцирования. Таблица производных функций.
реферат, добавлен 07.01.2023