Геометрия в архитектуре
Определение взаимосвязи свойств архитектурных сооружений с геометрическими формами. Адаптация архитектурных пропорций к архитектурным задачам представлений о геометрии и законах пространства. Сочетание различных геометрических фигур в архитектуре.
Подобные документы
Характеристика вопросов дифференциальной геометрии многообразий пар фигур, которые решаются с помощью современного метода внешних форм Картана. Исследование особенностей геометрических объектов, которые ассоциируются с рассматриваемой конгруэнцией.
статья, добавлен 23.06.2018Расширение основных геометрических понятий о симметрии на примере кристаллов. Исследование простых и сложных геометрических фигур и их составляющих. Изучение общих признаков многогранников, использование геометрических формул. Форма кристаллов.
реферат, добавлен 04.02.2015Проблема нахождения необходимых и достаточных условий в свойствах геометрических фигур, которая является актуальной в работе учителя математики. Методические рекомендации для преподавания темы "Необходимые и достаточные условия" из курса "Геометрия".
статья, добавлен 27.02.2019Зарождение геометрии в Древнем Египте. Элементарная планиметрия: аксиомы и постулаты. Названия и площади многоугольников. Примеры элементарных геометрических доказательств. Стереометрия: определение плоскости, свойства многогранника, призмы, пирамиды.
лекция, добавлен 20.04.2010Понятие движения в геометрии, отображения, образы и композиции отображений. Определение параллельного переноса и его основные свойства. Особенности центральной и зеркальной симметрии, поворот вокруг прямой. Свойства фигур вращения и осевая симметрия.
лекция, добавлен 31.01.2010Исторические замечания о геометрических преобразованиях на плоскости и в пространстве. Анализ примерной программы по геометрии. Параллельный перенос и поворот, осевая и центральная симметрии. Движения и равенство фигур. Симметрия относительно плоскости.
презентация, добавлен 28.03.2018Геометрия греческого математика Евклида и доказание пятой аксиомы о параллельных прямых. Гиперболический параболоид и описание искривленного пространства в геометрии Лобачевского, а также использование его формул в расчетах современных синхрофазотронов.
реферат, добавлен 13.12.2015Научно-исследовательские труды Б. Римана. Риманова геометрия – раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, с дополнительной структурой, римановой метрикой. Идея математического пространства.
реферат, добавлен 16.12.2017Основные понятия геометрии Лобачевского с приведением некоторых примеров теорем неевклидовой геометрии и различные приложения геометрии Лобачевского. Рассмотрение моделей (интерпретаций) данной геометрии, а также моделей Бельтрами, Кэли-Клейна, Пуанкаре.
курсовая работа, добавлен 22.04.2011Движением в геометрии называется отображение, сохраняющее расстояние. Отображения, образы, композиции отображений. Движение и тождественное отображение как его частный случай. Основные теоремы о задании движений пространства, виды композиций.
реферат, добавлен 05.03.2009- 36. Теория множеств
Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.
контрольная работа, добавлен 17.06.2014 Геометрия как одна из древних наук. Древний Египет как государство, оставившее самые ранние математические тексты. Возникновение и развитие геометрии. Сочинение Евклида "Начала". Геометрия Лобачевского. Материалистическая установка философии математики.
презентация, добавлен 21.02.2012Основные способы построения геометрической системы: метод координат, аксиоматический подход и определение геометрии по группе преобразований. Проективная плоскость и ее основная (проективная) геометрия. Характеристика Аффинной и Евклидовой геометрии.
реферат, добавлен 25.09.2011Сущностная характеристика и особенности геометрии Лобачевского и Римана. Примеры теорем Неевклидовых геометрий. Неевклидовы геометрии в плане дифференциальной геометрии и в виде проективных моделей. Основные свойства и специфика линейных преобразований.
курсовая работа, добавлен 23.04.2011История применения алгебры в геометрии. Основные уравнения конических сечений. Анализ изложения аналитической геометрии у Декарта и Ферма. Кинематическое образование линий. Геометрия как раздел математики, изучающий пространственные отношения и формы.
контрольная работа, добавлен 20.10.2012Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.
курсовая работа, добавлен 25.01.2017Отображения и преобразования. Современное определение и основные понятия проективной геометрии на плоскости. Перспективно-аффинное соответствие двух плоскостей. Построение главных направлений. Аналитическая аффинная геометрия. Проективные ряды и пучки.
учебное пособие, добавлен 31.03.2015Проведение исследования науки о пространственных отношениях и формах тел. Характеристика основных периодов развития геометрии. Особенность формирования "Начал" Евклида. Изучение элементарной, аналитической и дифференциальной геометрических теорий.
презентация, добавлен 19.05.2017Попытки доказательства V постулата Евклида. Кант об априорных понятиях. Теория И. Канта о человеческом познании. Появление неевклидовой геометрии. Янош Бояи, геометрия Лобачевского. Непротиворечивость геометрии Лобачевского. Развитие евклидовой геометрии.
реферат, добавлен 03.05.2019Аналитическая геометрия как раздел математики, в котором изучают свойства геометрических объектов средствами алгебры и математического анализа при помощи метода координат. Основные понятия, принципы данного метода, условия его эффективного использования.
реферат, добавлен 16.03.2016Геометрия как одна из наиболее древних математических наук. Творчество Евклида и его значение для математики. Изучение истории развития геометрии. Примеры доказательства пятого постулата Евклида. Рассмотрение аксиоматического построения геометрии.
курсовая работа, добавлен 05.04.2014Сферика как первая геометрия, отличная от евклидовой. История возникновения сферической геометрии, первые теоремы и античные математические сочинения. Основные понятия сферической геометрии, свойства сферического треугольника и его тригонометрия.
реферат, добавлен 01.10.2014Определения двумерной нечеткой проективной геометрии. Определение параметров и функции принадлежности двумерной нечеткой точки. Применение нечеткой проективной геометрии и статистической обработки результатов опытов при учете неравноточности измерений.
статья, добавлен 03.02.2017Изучение теории римановых пространств. Отождествление противоположных точек сферы в геометрии Римана. Исследование проективных плоскостей и пространства. Характеристика принципа двойственности, который прибавляет изящную симметрию во многие конструкции.
реферат, добавлен 10.09.2012Исследование особенностей фрактальной геометрии и ее приложений. Выявление классификации фракталов. Основные отрасли их применения в жизни человека в условиях новейших технологий. Установление взаимосвязи фрактальных свойств и природных объектов.
статья, добавлен 15.02.2019