Геометрия в архитектуре

Определение взаимосвязи свойств архитектурных сооружений с геометрическими формами. Адаптация архитектурных пропорций к архитектурным задачам представлений о геометрии и законах пространства. Сочетание различных геометрических фигур в архитектуре.

Подобные документы

  • История развития начертательной геометрии как науки. Достижения и открытия наиболее известных древнегреческих геометров. Возникновение и развитие способа ортогональных и аксонометрических проекций. Направления изучения начертательной геометрии.

    реферат, добавлен 17.03.2015

  • Геометрия как одно из наиболее долговечных творений человеческой мысли. Пифагор и его математическая школа в VI-V в. до н.э. Вклад Платона в развитие математики. Окончательное оформление геометрии как науки. Евклид и его уникальная в книга "Начала".

    реферат, добавлен 24.10.2010

  • История возникновения неевклидовой геометрии. Основные понятия Лобачевского о пространственных структурных отношениях и их обобщение, области применения. Нахождение моделей плоскости и протяженности. Аксиома о параллельных прямых и уравнение сферы.

    реферат, добавлен 04.09.2014

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательству некоторых основных планиметрических теорем (отрезок; параллельность и перпендикулярность; углы и площади; треугольники; прямые и окружности).

    курсовая работа, добавлен 31.10.2010

  • Общие аксиомы конструктивной геометрии, методы решения элементарных геометрических задач на построение на плоскости. Методы геометрических преобразований: симметрия, вращение, гомотетия, инверсия. Построение отрезков, заданных простейшими формулами.

    курсовая работа, добавлен 12.01.2013

  • Использование фигуры с незначительно измененными параметрами для проверки геометрических теорем и свойств. Замечательное свойство треугольника, определение значений тангенса и синуса углов. Проверка на монотонное изменение значений геометрических теорем.

    статья, добавлен 25.02.2016

  • Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.

    презентация, добавлен 13.04.2012

  • Создание изображений невозможных фигур, использование их на занятиях по математике для развития пространственного мышления учащихся, творческих людей, склонных к изобретательству. Создание Оскаром Рутерсвардом различных геометрических трехмерных фигур.

    статья, добавлен 22.02.2019

  • Геометрия Лобачевского (гиперболическая геометрия) как одна из неевклидовых геометрий. Евклидова аксиома о параллелях. Разработка модели планиметрии. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому.

    реферат, добавлен 28.05.2014

  • Роль геометрических фигур в жизни человека. Использование их в строительстве, математике, науке и технике. Все геометрические фигуры имеют свои образы в окружающем мире. Объемные геометрические фигуры, их определение. Возникновение термина "Геометрия".

    презентация, добавлен 11.05.2023

  • Использование характеристик прямых, плоскостей и векторов при расчете параметров геометрических фигур. Аффинные преобразования, инвариантные точки и прямые. Уравнения биссектрисы и медианы. Асимптоты, эксцентриситет, директрисы, фокальные радиусы.

    контрольная работа, добавлен 20.04.2015

  • Определение понятия симметрии и ее виды. Окружность и параллелограмм как простейшие фигуры, обладающие центральной симметрией. Примеры фигур, не имеющих центра симметрии (треугольник). Описание ее проявления в искусстве, архитектуре, технике и быту.

    презентация, добавлен 22.12.2014

  • "Начала" Евклида как повод для создания новых теорий в области геометрии. Создание и разработка геометрии Лобачевского. Вопрос об исследовании всей структуры системы аксиом как евклидовой геометрии. "Лекции о новой геометрии" Паши и его аксиомы порядка.

    реферат, добавлен 30.10.2010

  • Анализ особенностей развития неэвклидовой геометрии. Н.И. Лобачевский и его геометрия. Пятый постулат Евклида. Параллельные прямые по Лобачевскому. Теорема о существовании параллельных прямых. Треугольники и четырехугольники на плоскости Лобачевского.

    курсовая работа, добавлен 26.09.2017

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.

    курсовая работа, добавлен 22.04.2011

  • Центральная симметрия: определение и её значение. Фигуры, обладающие центральной симметрией и нахождение их центра, прямоугольные трапеции и квадрат, поворот фигур вокруг оси. Примеры симметрии в растениях, значение центральной симметрии в архитектуре.

    презентация, добавлен 13.04.2012

  • Изображение фигуры на плоскости как графический способ представления информации. Многообразие геометрических объектов пространства, отношения между ними и их графическое отображение на плоскости. Основы визуализации информации геометрических объектов.

    курс лекций, добавлен 21.04.2015

  • Использование движения плоскости в начертательной геометрии для установления и исследования функциональной зависимости между различными величинами. Вращение плоскости и пространства, определение его центра и оси. Классификация видов и формул поворота.

    курсовая работа, добавлен 16.08.2010

  • Основы геометрии распределения Картана M в проективном пространстве. Теория двойственных линейных связностей, индуцируемых при различных классических оснащениях распределения Картана M. Пути приложения аффинных связностей к изучению сопряженной ткани.

    автореферат, добавлен 17.12.2017

  • Основные закономерности и содержание геометрии Лобачевского, понятие псевдосферы, модели Клейна и Пуанкаре. Анализ поверхности постоянной отрицательной кривизны. Аксиоматика евклидовой геометрии: связь прямой и точки, отрезка непрерывности и плоскости.

    реферат, добавлен 21.10.2014

  • Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.

    курс лекций, добавлен 22.11.2015

  • Краткая биографическая справка из жизни Н.И. Лобачевского. История появления геометрии. Модель Пуанкаре, Клейна и интерпретация Бельтрами. Практическое применение геометрии Лобачевского: теорема Пифагора, площадь треугольника и круга, длина окружности.

    контрольная работа, добавлен 15.04.2013

  • Нахождение угла между прямой и плоскостью в пространстве. Составление уравнения перпендикуляра опущенного из точки. Определение формул эллиптического, гиперболического и параболического цилиндров. Написание уравнений геометрических свойств поверхности.

    лекция, добавлен 26.01.2014

  • Образование проекций изображений пространственных форм на плоскости. Сущность метода Монжа. Восходящие и нисходящие профильные прямые. Аксонометрическое проецирование плоских фигур. Виды изделий и конструкторской документации. Классификация разрезов.

    шпаргалка, добавлен 15.02.2016

  • Характеристика отношения параллельности на плоскости Лобачевского. Анализ положений неевклидовой геометрии. Примеры видоизменения теорем, основанных на аксиоме параллельности. Анализ сущности параллельных и непараллельных линий в геометрии Лобачевского.

    презентация, добавлен 16.01.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.