Кривые второго порядка. Свойства эллипса, гиперболы и параболы
Определение кривых второго порядка на плоскости как линий пересечения кругового конуса с плоскостями, не проходящими через его вершину. Характеристика эллипса с помощью декартовой системы координат. Понятие и основные свойства гиперболы и параболы.
Подобные документы
Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.
курс лекций, добавлен 05.01.2016- 52. Понятие параболы
Парабола как множество точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки. Расстояние между фокусом и директрисой параболы. Расстояние по формуле расстояния между двумя точками. Каноническое уравнение параболы.
презентация, добавлен 21.09.2013 Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.
курс лекций, добавлен 10.09.2016- 54. Обратимость линейных дифференциальных операторов второго порядка в однородных пространствах функций
Изучение линейных дифференциальных операторов (уравнений) второго порядка в однородном пространстве функций, определенных на всей оси. Условия их обратимости. Условия разрешимости классов уравнений второго порядка с помощью операторных матриц 2 порядка.
статья, добавлен 01.02.2019 Невырожденные матрицы второго порядка. Теорема о разложении матрицы в линейную комбинацию ее сопряжённых корней. Условие идемпотентности квадратных матриц второго порядка. Нелинейные системы уравнений второго порядка, задаваемые матричными уравнениями.
научная работа, добавлен 04.05.2012Понятие поверхности второго порядка - геометрического места точек, декартовы прямоугольные координаты которых удовлетворяют определенное уравнение. Исследование формы поверхностей второго порядка по их каноническим уравнениям: эллипсоид, гиперболоид.
реферат, добавлен 07.01.2012Матрицы и определители, операции над ними. Линейная зависимость системы векторов, свойства векторного произведения. Комплексные числа. Прямая в пространстве. Взаимное расположение прямой и плоскости. Кривые второго порядка. Решение систем уравнений.
методичка, добавлен 22.12.2010Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.
курс лекций, добавлен 02.05.2014Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.
лекция, добавлен 12.03.2013Определение поверхностей второго порядка. Каноническое уравнение эллипсоида, однополостного гиперболоида, двуполостного гиперболоида, эллиптического параболоида, гиперболического параболоида. Геометрический вид и сечение поверхностей второго порядка.
реферат, добавлен 18.12.2010Производные второго порядка, функции нескольких переменных. Понятие дифференциала второго порядка. Разложение по формуле Тейлора. Необходимые условия существования экстремума. Критическая или стационарная точка, в которой может существовать экстремум.
презентация, добавлен 19.11.2017Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.
контрольная работа, добавлен 29.09.2013Канонические уравнения невырожденных поверхностей второго порядка и их графическая интерпретация. Коническая и цилиндрическая поверхности. Определение их форм и свойств с помощью метода сечений. Построение тела, ограниченного гиперболоидом и сферой.
лекция, добавлен 09.07.2015- 64. Нелинейная свободная система второго порядка, описываемая обыкновенным дифференциальным уравнением
Представление исходной нелинейной свободной системы второго порядка в виде системы дифференциальных уравнений первого порядка и ее линеаризация. Изучение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.
курсовая работа, добавлен 22.05.2012 Построение уравнений прямой с направляющим и нормальным вектором. Условия перпендикулярности вектора. Построение уравнения прямой с угловым коэффициентом. Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.
презентация, добавлен 06.09.2017Определение степенной функции y = a(x в степени m), где а и m - постоянные величины. Ход урока: повторение свойств степеней, определение понятий. Построение графиков параболы и гиперболы. Решение уравнений и неравенств. Сравнительный анализ результатов.
презентация, добавлен 03.03.2012- 67. Линейная алгебра
Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.
контрольная работа, добавлен 22.12.2019 Характеристика квазилинейных уравнений второго порядка. Разработка программы по исследованию уравнений. Составление функции, с помощью которой можно будет определить наличие предельного цикла в уравнении, периода одного полного цикла. Тестирование ПО.
дипломная работа, добавлен 14.12.2019Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.
учебное пособие, добавлен 06.02.2011Алгоритм нахождения интегральных кривых однородных уравнений первого порядка. Исследование интегральных кривых уравнения. Описание решения ряда задач, характеризующих свойства однородных дифференциальных уравнений. Методы построения интегральных кривых.
дипломная работа, добавлен 21.04.2023Основная теорема о поверхностях второго порядка. Типы поверхностей второго порядка. Цилиндрические поверхности и их общее уравнение. Уравнение конической поверхности. Поверхности вращения. Уравнение поверхности вращения, образованной вращением кривой.
контрольная работа, добавлен 13.11.2011Описание вида и проведение линейного понижения дифференциального уравнения второго порядка. Построение функции уравнения дифференциала и содержание определителя Вронского. Структура общего решения уравнений второго порядка, доказательство, теорема.
контрольная работа, добавлен 26.11.2012Взаимное расположение прямой и плоскости в декартовой системе координат. Уравнение плоскости, проходящей через точку параллельно горизонтальной, фронтальной и профильной прямым. Свойства нормального и направляющего векторов плоскости в пространстве.
контрольная работа, добавлен 01.03.2017Уравнение прямой с направляющим вектором. Математическое описание прямой с нормальным вектором. Уравнение прямой с угловым коэффициентом. Математическое выражение кривых второго порядка. Полярная система координат. Векторная функция скалярного аргумента.
презентация, добавлен 29.09.2017Понятие линейного уравнения, его типы и формы. Сущность и математическое обоснование определителей второго порядка. Порядок и правила решения систем двух линейных уравнений с двумя переменными с помощью определителей. Использование закона Крамера.
конспект урока, добавлен 07.04.2014