Кривые второго порядка. Свойства эллипса, гиперболы и параболы
Определение кривых второго порядка на плоскости как линий пересечения кругового конуса с плоскостями, не проходящими через его вершину. Характеристика эллипса с помощью декартовой системы координат. Понятие и основные свойства гиперболы и параболы.
Подобные документы
Особенности планирования эксперимента. Ортогональный центрально-композиционный план второго порядка. Коэффициенты аппроксимирующего полинома в виде полной квадрики. Проверка значимости коэффициентов аппроксимирующего полинома по критерию Стьюдента.
курсовая работа, добавлен 23.04.2014Рассмотрение вопроса численного интегрирования дифференциального уравнения Ферхюльста второго порядка с заданными начальными условиями. Сравнение приближенных вычислений данных с точным решением уравнения при расчетах в программе MathCAD рядом Тейлора.
статья, добавлен 30.09.2020Криволинейные системы координат. Векторы и тензоры, их преобразования при поворотах системы координат. Свойства тензоров второго ранга, символ Леви-Чивита. Преобразование тензорных величин при инверсии. Взаимно однозначное соответствие между переменными.
дипломная работа, добавлен 18.09.2015Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.
курсовая работа, добавлен 10.01.2012Интегрирование однородного линейного уравнения второго порядка с постоянными коэффициентами методом Эйлера. Система линейно независимых решений и определитель Вронского. Применение явления резонанса. Способы гашения нежелательных вынужденных колебаний.
дипломная работа, добавлен 27.02.2020Исследование многоточечной краевой задачи, в которой функция удовлетворяет условиям Каратеодори. Вид трехточечной задачи для дифференциального уравнения второго порядка. Рассмотрение вспомогательного утверждения о разрешимости операторных уравнений.
статья, добавлен 26.04.2019В работе рассматривается способ формообразования кривых с помощью биквадратичного преобразования Г4, где прообразом задается окружность. Для получения кривых различной формы соответственно будет изменяться расположение прообраза-окружности на плоскости.
статья, добавлен 16.02.2019Специальные свойства геометрических объектов, изучаемых в дифференциальной геометрии. Определение и применение геодезических линий. Прямолинейные образующие конуса с выколотой вершиной и цилиндра как пример геодезических линий на поверхности; их свойства.
курсовая работа, добавлен 05.01.2018Понятие системы координат. Использование прямоугольной (декартовой), полярной, цилиндрической, сферической системы координат при решении задач. Определение координат радиус-вектора. Формулы перехода от цилиндрических и сферических координат к декартовым.
реферат, добавлен 16.05.2016Исследование условий однородности линейных уравнений. Выделение совокупности линейно-независимых частных решений. Определитель Вронского n–го порядка, составленный из решений фундаментальной системы. Основные свойства однородных ЛДУ n-го порядка.
презентация, добавлен 17.09.2013- 111. Кривые линии
Способы образования кривых линий как траекторий последовательных положений движущейся точки. Проведение касательных и нормалей к плоским кривым. Кривые линии, построенные при помощи центроид - рулетты, их виды. Примеры замечательных плоских кривых линий.
контрольная работа, добавлен 21.02.2013 Свойства конических сечений и решение с их помощью задач. Содержательное исследование дельтоида в работах ученых. Замечательные кривые и их качества. Особенности логарифмической спирали. Период колебаний точки, скользящей по перевёрнутой циклоиде.
курсовая работа, добавлен 08.04.2014- 113. Высшая математика
Основные действия над матрицами. Решение произвольных систем уравнений Крамера и Гаусса. Коллинеарные и компланарные векторы. Кривые второго порядка. Аналитическая геометрия в пространстве. Поверхности вращения. Бесконечно малые функции. Графы и сети.
курс лекций, добавлен 05.03.2016 Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.
контрольная работа, добавлен 15.11.2013Разработка модели, не имеющей фокальных линий конгруэнции первого порядка эквиаффинных образов окружностей, полученных на основе эллиптического поворота плоскости. Основные элементы полученной конгруэнции, типы координатных линий криволинейных координат.
статья, добавлен 30.07.2017Понятие и свойства вектора как математической абстракции объекта. Исследование декартовой системы координат в пространстве. Расчет плоскостей. Виды параметрических уравнений прямой. Связь полярных координат с декартовыми. Гиперболический параболоид.
лекция, добавлен 22.11.2015Определители второго, третьего и четвертого порядка, их свойства и методы вычисления. Операции над матрицами и их особенности. Понятие ранга матрицы, правило Крамера. Матричный метод решения систем, пределы и непрерывность функций. Дифференциал функции.
учебное пособие, добавлен 28.08.2017Вид частного решения уравнения n-го порядка. Определение значений линейных комбинаций функции и ее производных. Нахождение решения ДУ n-го порядка, когда все n условий заданы в одной точке. Множество интегральных кривых, проходящих через одну точку.
презентация, добавлен 17.09.2013История возникновения и использования матриц в алгебре. Рассмотрение основных понятий и типов матриц. Основные арифметические операции над матрицами. Свойства умножения матриц на число. Вычисление определителей второго и третьего порядка в матрице.
контрольная работа, добавлен 15.11.2017Суть ортонормированной (декартовой) системой координат, в которой единицы измерения по всем осям равны друг другу. Действия над векторами в координатной форме, вычисление направляющих косинусов. Уравнение окружности, общее преобразование систем координат.
контрольная работа, добавлен 15.05.2011Разрешение системы уравнений методом Крамера. Нахождение по координатам вершин треугольника АВС. Определение типа кривой второго порядка и ее основных геометрических характеристик. Формулирование и решение уравнения прямой; проходящей через две точки.
контрольная работа, добавлен 14.06.2015Понятие, виды и операции над векторами. Определение положения точки в декартовой системы координат. Отличия векторных от скалярных величин. Свойства смешанного произведения. Решения системы уравнений методом Крамера. Расчёт объема и высоты пирамиды.
лекция, добавлен 21.09.2017- 123. Алгебра и геометрия
Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.
курс лекций, добавлен 17.01.2014 Стандартные сведения из теории бинарных квадратичных форм и алгебры матриц второго порядка и взаимосвязь понятий вектор-матрицы второго порядка и бинарной квадратичной формы. Идея дискретного эргодического метода на модельном примере. Ключевая лемма.
автореферат, добавлен 16.02.2018Асимптотические представления некоторых типов решений одного класса нелинейных неавтономных дифференциальных уравнений второго порядка и достаточные условия существования таких решений. Медленно меняющаяся функция. Применение правила Лопиталя.
статья, добавлен 27.06.2016