Выделение минимального остовного дерева

Изучение и создание алгоритма решения задачи о выделении минимального остовного дерева. Понятие теории графов. Характеристика алгоритма Прима, Краскала, Борувки. Определение каркаса, алгоритм выделения минимального остовного дерева нагруженного графа.

Подобные документы

  • Сущность истории создания теории графов. Исследование задачи о Кенигсбергских мостах. Особенность изучения хроматических многочленов. Результаты работы жадного алгоритма при выборе разных порядков вершин. Анализ параллельных и распределенных систем.

    реферат, добавлен 14.12.2015

  • Анализ содержания предположений, которые легли в основу теории случайных ошибок. Сравнительная характеристика генеральной и выборочной совокупности измерений. Определение минимального количества измерений. Методика определения коэффициента Кохрена.

    лекция, добавлен 26.09.2017

  • Особенность изображения графов на рисунках. Описание организации структур данных. Характеристика простого и сложного орграфа. Отображение алгоритма поиска центра совокупности непустого множества вершин. Анализ исследования исходного кода программы.

    контрольная работа, добавлен 07.01.2016

  • Понятие нормального алгоритма Маркова как одного из стандартных способов формального определения понятия алгоритма. Особенности понятия ассоциативного исчисления. Характеристика суперпозиции, объединения, разветвления и итерации алгоритмов и их специфика.

    реферат, добавлен 03.10.2014

  • Решение задачи на увеличение энтропии источника дискретных сообщений с применением алгоритма Хаффмана. Определение энтропии двоичного сигнала, способ получения кодовых комбинаций. Ошибка и её влияние на получаемые сообщения, характеристика кода Хаффмана.

    лабораторная работа, добавлен 20.05.2021

  • Изучение функций, заданных на множестве графов и принимающих значения из некоторого множества чисел. Определение числа компонент связности графа. Правила раскраски графа и карт. Проблема четырех красок. Нахождение множеств внутренней устойчивости.

    реферат, добавлен 13.11.2015

  • Теория и история возникновения графов. Задача о Кенигсбергских мостах и ее решение "одним росчерком" графа. Понятие эйлерова графа, его свойства. Значение и примеры применения графов для решения математических задач, головоломок, задач на смекалку.

    презентация, добавлен 18.03.2016

  • Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.

    курсовая работа, добавлен 26.11.2014

  • Использование дерева решения, которое позволяет представить структуру рассматриваемых альтернатив и специфику воздействий связей внешней среды в виде графа, который не имеет циклов. Исследование набора вершин и дуг, а также циклов в данном графе.

    статья, добавлен 17.08.2018

  • Понятие алгоритма, неформальная вычислимость. Частично-рекурсивные функции. Элементарная арифметика и неполнота. Арифметические функции и отношения. Варианты теории чисел. Теорема и последовательность Гудстейна. Задачи разрешения и задачи оптимизации.

    учебное пособие, добавлен 07.04.2016

  • Использование теории графов для представления отношений между элементами сложных структур различной природы. Определение связности темпорального графа. Применение метода Мальгранжа для нахождения максимальных компонент сильной связности четких графов.

    статья, добавлен 19.01.2018

  • Анализ алгоритма разбиения графа, приводящего к минимуму числа соединительных ребер за конечное число шагов при наличии ограничений. Методика определения количества внешних соединительных ребер составного элемента графа до внесения в него вершин.

    статья, добавлен 12.06.2016

  • Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.

    презентация, добавлен 31.10.2013

  • Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.

    методичка, добавлен 29.09.2017

  • Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.

    реферат, добавлен 13.01.2012

  • Алгоритм решения задачи о назначениях, предполагающий минимизацию ее целевой функции, поиск оптимального решения. Венгерский метод - один из интереснейших и наиболее распространенных методов решения транспортных задач. Описание алгоритма данного метода.

    курсовая работа, добавлен 14.06.2011

  • Использование алгоритма Брезенхема растровыми устройствами с ЭЛТ. Выбор оптимальных растровых координат для представления отрезка. Изучение основной идеи алгоритма Брезенхема. Вычисление погрешности при представлении отрезка дискретными пикселами.

    реферат, добавлен 19.05.2014

  • Задачи линейного программирования и их решение с помощью методов оптимизации. Построение целевой функции и определение ее минимального и максимального значений при заданных условиях-ограничениях. Решение данных задач симплекс-методом и заполнение таблиц.

    контрольная работа, добавлен 06.06.2013

  • Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.

    презентация, добавлен 21.09.2017

  • Дерево как связный граф, не содержащий циклов. Перечень основных свойств деревьев. Общее понятие про орграф. Содержание теоремы А. Кэлли. Сущность понятия "подграф". Пример алгоритма построения каркаса в связном графе, особенности его обоснования.

    реферат, добавлен 18.04.2012

  • История возникновения теории графов. Основные понятия: ориентированный граф, петля, кратные ребра, гипердуги, подграфы. Способы представления графов в компьютере. Матрица смежности, инцидентность вершин и ребер, массивы дуг. Обзор задач теории графов.

    курсовая работа, добавлен 14.06.2011

  • Сутність позиційних, диференціальних та стохастичних ігор, їх складність, специфіка та застосування. Оптимальне рішення задачі шляхом складання матриці та відповідного дерева гри. Процес створення користувацької бази даних, формування алгоритму Дейкстри.

    курсовая работа, добавлен 26.01.2015

  • Разработка эффективного вычислительного алгоритма решения задачи вариационной инициализации модели океана. Разработка сопряженной сигма-модели динамики океана. Основные алгоритмы для решения прямой и сопряженной задачи вычисления функции уровня.

    автореферат, добавлен 02.08.2018

  • Решения задачи коммивояжера. Сущность метода прямого перебора. Построение дерева ветвлений и нахождение длины путей. Решение дискретной задачи транспортного типа. Сущность метода "ветвей и границ". Приведение задачи максимизации к задаче минимизации.

    контрольная работа, добавлен 19.04.2013

  • Построение математических моделей физических процессов и явлений. Применение вариационных методов для решения задач со свободными границами. Разработка численного алгоритма решения для двумерной задачи с неизвестной границей в прямоугольной области.

    статья, добавлен 30.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.