Свойства биномиальных коэффициентов

Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.

Подобные документы

  • Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.

    курсовая работа, добавлен 30.11.2012

  • Определение общего содержания и описание элементарного доказательства Великой теоремы Ферма с использованием малой теоремы Ферма и метода клонирования уравнений. Доказательство справедливости Великой теоремы Ферма для разных значений показателя степени.

    задача, добавлен 18.05.2012

  • Узкая и широкая формулировка теоремы Ферма. Опровержение гипотезы Эйлера и открытой гипотезы Ландера-Паркина-Селфриджа. Проблема доказательства теоремы Ферма. Теорема Ферма в культуре и искусстве. Рассмотрение проектов доказательств теоремы Ферма.

    реферат, добавлен 12.01.2020

  • Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.

    курсовая работа, добавлен 09.07.2015

  • Формулировка теоремы Ферма из теории алгебраических чисел. Доказательство данной теоремы методом "от противного": сначала предполагается выполнение основного равенства теоремы, а затем показывается его нарушение, приводящее к выполнению утверждения.

    статья, добавлен 27.09.2012

  • Характеристика основных правил комбинаторики. Исследование теоремы о включениях и исключениях. Особенность комбинаторного смысла числа перестановок. Анализ порядка выбора монет. Упрощение вычислительных действий как главная цель изучения бинома Ньютона.

    лекция, добавлен 25.10.2019

  • Числа Эйлера первого порядка: определения, треугольник Эйлера. Рекуррентные формулы, дополнительные тождества. Связь натуральных степеней и последовательных биномиальных коэффициентов. Зеркальное отражение перестановки. Определение чисел Стирлинга.

    реферат, добавлен 01.10.2013

  • Характеристика особенностей теоремы Муавра-Лапласа - одной из предельных теорем теории вероятностей. Сущность первообразной функции Гаусса. Формула Ньютона-Лейбница. Стандартный интеграл Лапласа. Теорема сложения вероятности для несовместных событий.

    реферат, добавлен 02.01.2013

  • Биография П. Ферма и его вклад в развитие новых отраслей математического анализа, аналитической геометрии и теории вероятностей. История Большой теоремы Ферма. Доказательство леммы 1 (Жермен) и леммы 2 (вспомогательной). Доказательство теоремы Ферма.

    реферат, добавлен 30.10.2010

  • Творці математичного аналізу: Ньютон і Лейбніц. Особливості походження похідної та інтегралу. Фундаментальна праця Ньютона "Математичні початки натуральної філософії". Біном Ньютона і формула Ньютона-Лейбніца, їх особливість. Роботи Лейбніца з математики.

    презентация, добавлен 11.03.2015

  • Интегрирование иррациональных выражений и выражений, содержащих тригонометрические функции. Методы интегрирования простейших дробей. Первообразная, неопределенный интеграл и его свойства. Таблица основных формул интегрирования. Формула Ньютона–Лейбница.

    лекция, добавлен 29.09.2014

  • Построение комбинаторной теории Лейбницем. Использование ее при решении задач алгебры, геометрии. Интеграция комбинаторики в современную математику. Правила суммы и умножения. Описание урновой схемы как одной из простейших моделей теории вероятностей.

    контрольная работа, добавлен 17.06.2014

  • Интерполяционные полиномы Ньютона для равных и неравных интервалов. Сравнение интерполяционных полиномов Лагранжа и Ньютона. Порядок вычисления конечных разностей. Определение эффективного уровня интерполяционного полинома для аппроксимации функции.

    лабораторная работа, добавлен 06.11.2021

  • Рассмотрение понятия интерполяции и ее практического применения. Нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений. Экстраполирование функции с использованием первой и второй интерполяционных формул Ньютона.

    реферат, добавлен 23.12.2014

  • Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.

    реферат, добавлен 30.03.2017

  • Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.

    курсовая работа, добавлен 09.10.2014

  • Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.

    доклад, добавлен 23.04.2013

  • Поняття інтерполяції як різновиду апроксимації, при якій крива побудованої функції проходить точно через наявні точки даних. Характеристика теореми Вейерштрасса. Розгляд першої та другої інтерполяційної формули Ньютона. Оцінка похибок центральних формул.

    курсовая работа, добавлен 06.04.2015

  • Рассмотрение теоремы Евклида. Исследование геометрического способа доказательства формулы древнегреческим учёным, живущим в Александрии в III веке до н.э. Определение площади квадрата, построенного на всём отрезке, если отрезок как либо разбит на два.

    презентация, добавлен 14.03.2016

  • Доказательство теоремы Ферма с использованием метода замены переменных в уравнениях, применение которого доказывает, что теорема не имеет решения в целых положительных числах, а требует применение дробных чисел в одном или нескольких своих переменных.

    творческая работа, добавлен 12.06.2009

  • Современная формулировка великой теоремы Ферма. Доказательство: для всех троек (z,x,y) пифагоровых чисел; для всех членов семейства любой тройки пифагоровых чисел; для всех троек чисел, не больших числа z; для всех троек чисел натурального ряда чисел.

    реферат, добавлен 30.03.2017

  • Подходы к доказательству теоремы Ферма и обоснование ее физического смысла. Принципы и этапы решения исследуемой задачи с использованием современных технологий. Описание физической сущности идей, заложенных в абстракции общей теории относительности.

    статья, добавлен 23.11.2018

  • Использование в математике теоремы Ферма и бесконечности регулярных простых чисел. Свойства сравнения по модулю третьего натурального числа. Доказывание многих высказанных в математике предложений. Доказательство теоремы и решение данного уравнения.

    статья, добавлен 03.03.2018

  • Аппроксимации функций, численное дифференцирование и интегрирование. Оценка погрешности квадратурных формул Ньютона-Котеса. Поиск минимума, случай одной переменной. Метод золотого сечения. Интерполяционный многочлен Ньютона для равноотстоящих узлов.

    курс лекций, добавлен 03.07.2013

  • Случайные величины и их классификация, числовые характеристики: математическое ожидание, дисперсия. Статистические гипотезы и способы их проверки: сравнение двух генеральных совокупностей, двух биномиальных распределений, критерий согласия Пирсона.

    контрольная работа, добавлен 12.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.