Свойства биномиальных коэффициентов

Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.

Подобные документы

  • Свойства простых чисел. Умножение числа на Пифагорову тройку с использованием универсальной формулы. Нахождение свойств бесконечного количества Пифагоровых троек, расположенных на прямой, удовлетворяющих теореме Ферма. Доказательство теоремы Пифагора.

    научная работа, добавлен 22.11.2013

  • Формула Архимеда для объема шара. Доказательство теоремы Ферма-Эйлера о представлении простых чисел в виде суммы двух квадратов. Построение циркулем и линейкой правильного семнадцатиугольника. Формула для определения площади треугольника по его сторонам.

    методичка, добавлен 25.11.2013

  • Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.

    курсовая работа, добавлен 10.07.2017

  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация, добавлен 01.02.2016

  • Понятие, определение и свойства неопределенного интеграла. Представление рациональной функции в виде суммы простейших дробей. Интегрирование простейших дробей. Понятие дифференциального бинома. Примеры вычисления интегралов от дифференциального бинома.

    курсовая работа, добавлен 10.12.2017

  • Пьер де Ферма - французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел, оптики, исчислении бесконечно малых величин. Краткая биография математика. Формулировка Великой теоремы Ферма.

    презентация, добавлен 01.04.2012

  • Вычисление значения функции в точке. Характеристика интегральной суммы функции на отрезке. Определение нижнего и верхнего предела интегрирования. Рассмотрение методов применения формулы Ньютона-Лейбница. Установление основных способов замены переменной.

    задача, добавлен 17.02.2016

  • Формулировка Великой теоремы Ферма, диофантовое уравнение. Использование методов замены переменных для доказательства теоремы. Решение в целых положительных числах. Условия решения уравнений для четных показателей степени методами элементарной алгебры.

    творческая работа, добавлен 14.02.2011

  • Определенные и неопределенные интегралы функций и их свойства. Метод непосредственного интегрирования. Интегрирование элементарных и рациональных дробей, биноминальных дифференциалов. Универсальная тригонометрическая подстановка. Теорема Ньютона-Лейбница.

    курс лекций, добавлен 05.03.2016

  • Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.

    курсовая работа, добавлен 01.10.2012

  • Понятие и характеристика треугольника Паскаля, история его открытия, специфика и предназначение биномиальных тождеств. Описание, отличительные черты методов включений и исключений. Использование производящих функций, сущность рекуррентных соотношений.

    реферат, добавлен 30.03.2016

  • Определение сходимости степени ряда. Применение признаков Даламбера и Коши. Использование формулы Тейлора при аппроксимации и доказательстве большого числа теорем в дифференциальном исчислении. Вычисление значений показательной и логарифмической функции.

    контрольная работа, добавлен 16.12.2013

  • Общая характеристика метода Ньютона, знакомство с особенностями применения. Анализ способов записи формального представления по формуле Тейлора, основные проблемы. Рассмотрение процесса вычисления приближенного значения корня, использование выражений.

    лабораторная работа, добавлен 02.10.2013

  • Выработка умения применять формулы квадрата двучлена для преобразования квадрата суммы или разности в трехчлен. Ознакомление с основными методами закрепления и усовершенствования навыков решения уравнений и тождественных преобразований целых выражений.

    разработка урока, добавлен 30.07.2015

  • Применение метода, основанного на свойствах симметрических многочленов для решения различных алгебраических задач. Основные понятия теории симметрических многочленов и применение их в решении неравенств, доказательстве тождеств и систем уравнений.

    курсовая работа, добавлен 23.04.2014

  • Побудова апарату некласичних мінорант Ньютона функцій однієї дійсної змінної, заданих таблично. Використання цього апарату для оцінки точності наближення функцій некласичними мінорантами Ньютона. Основні властивості міноранти Ньютона та її діаграми.

    статья, добавлен 30.01.2017

  • Принцип Дирихле и его применение. Элементы теории, определение и свойства сравнений. Вычеты по модулю, системы вычетов. Теоремы Эйлера и Ферма. Нахождение остатков от деления степеней. Применение движений плоскости к решению задач элементарной геометрии.

    разработка урока, добавлен 20.12.2010

  • Докозательство ведется применительно к плоскостной координатной системе xOy, т.е. при двух координатах Ox и Oy. Надобность в третьей и последующих координатах отпадает. Элементы xn и yn являются составными частями соответствующих числовых рядов.

    статья, добавлен 17.07.2008

  • Знаходження кореня рівняння заданої неперервної функції на певному відрізку. Умови ітераційних обчислень у методі Ньютона. Критерії умов завершення розрахунку для алгоритму. Недоліки методу Ньютона. Обчислення квадратного кореня за його вказаного методу.

    практическая работа, добавлен 09.08.2022

  • Введение понятия бинарного события. Рассмотрение событий, задаваемых булевыми функциями. Доказывание теоремы о вероятности события. Получение расчетных формул для условных вероятностей и формул Байеса, построение задач на применение полученных формул.

    статья, добавлен 12.08.2020

  • Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.

    реферат, добавлен 06.04.2009

  • Применение правила Лопиталя к неопределенностям. Составление уравнения касательных к гиперболе. Исследование функции, нахождение экстремумов и построение ее графиков. Вычисление интеграла заменой переменных и с использованием формулы Ньютона-Лейбница.

    контрольная работа, добавлен 17.02.2011

  • Постановка задачи и основные этапы отыскания решения. Погрешности и критерии окончания метода деления отрезка пополам при решении нелинейного уравнения. Применение метода Ньютона, простых итераций, секущих и ложного положения при вычислительном процессе.

    контрольная работа, добавлен 28.03.2015

  • Сущность, разнообразие и основные характеристики многогранников. Способы получения правильных многогранников из куба. Определение площади сечения, проходящего через диагонали двух граней куба. Рассмотрение теоремы Эйлера для простого многогранника.

    реферат, добавлен 12.06.2016

  • Теории неопределенных интегралов, интегралов Римана для функций одного переменного и теории числовых рядов. Суммы Дарбу, их свойства. Площадь криволинейной трапеции, объем тела вращения. Определение числовых рядов, их сходимость и преобразование.

    методичка, добавлен 06.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.